Skip to main content
Log in

Application of Scale of Absolute Surface Potentials to the Reactions of Chemisorption and Electrocatalysis on Metals. Part 2

  • PHYSICOCHEMICAL PROCESSES AT THE INTERFACES
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The concepts of the absolute surface potential (ASP) ES of the (hkl) facet of a metal crystal with ES = ΔGs/zF directly related to the Gibbs surface energy ΔGS and with an equilibrium between (auto) adsorption of its own atoms on this facet of Nad and negative charged surface vacancies (NCSV). On this basis, the ASP scale is a scale of adsorption potentials with point defects—the NCSV and adatoms, which determine their surface statistics as a result of the action of surface and electrostatic forces on these quasiparticles. This dualism is aimed at overcoming differences in the understanding of the surface potential in Helmgholz theory and Gibbs theory. The adsorption scale of the singular metal face has a special point—the potential of the zero charge (PZC) of the electrode \(E_{{\text{N}}}^{0}{\text{ = }}-\Delta G_{{\text{S}}}^{0}{{(hkl)} \mathord{\left/ {\vphantom {{(hkl)} {zF}}} \right. \kern-0em} {zF}}\) with a minimum of adsorption of atoms and NCSV. Point of absolute adsorption devides the scale of cathodic and anodic polarization (Fig. 4.1, Part 1) with predominant adsorption of NCSV or adatoms, reaching the maximum degree at the potential of the second special point \(E_{{\text{S}}}^{0}\) in each area of the ideal electrode polarization. Part 2 discusses the transition from the ASP to hydrogen scale using the ratio between the standard and absolute values ​​of a hydrogen electrode adopted by the International Union of Physical and Applied Chemistry. Combining the ASP scale with the scale of the absolute potentials of electrode reactions made it possible to calculate the electrode potential of a chemisorption and electrocatalytic reaction of hydrogen evolution on various metals, as well as the potential for the formation of passivating oxide on metals (Ni, Cr), known as the “Flade potential.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 5.1.
Fig. 6.1.

Similar content being viewed by others

REFERENCES

  1. Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2018, vol. 54, no. 6, P. 991.

  2. Bard, A.J., Inzelt, G., and Scholz, F., Electrochemical Dictionary, Berlin, Springer, 2012.

    Book  Google Scholar 

  3. Bockris, J.O'M., Trans. Faraday Soc., 1947, vol. 43, p. 417.

    Article  Google Scholar 

  4. Trassatti, S., J. Electroanal. Chem., 1972, vol. 39, p. 163.

    Article  Google Scholar 

  5. Trasatti, S., Pure Appl. Chem., 1986, vol. 58, p. 955.

    Article  Google Scholar 

  6. Trasatti, S. and Lust, E., The Potential of Zero Charge, in Modern Aspects of Electrochemistry no. 33, White, R.E., Bockris, J.O’M, and Conway, B.E., Eds., New York: Springer, 1999.

  7. Andreev, Yu.Ya., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 290.

    Article  Google Scholar 

  8. Vitos, L., Ruban, A.V., Skriver, H.L., and Kollar, J., Surf. Sci., 1998, vol. 441, p. 186.

    Article  Google Scholar 

  9. Antropov, L.I., Teoreticheskaya elektrokhimiya (Theoretical Electrochemistry), Moscow: Vysshaya Shkola, 1975.

  10. Roberts, M.W. and McKee, C.S., Chemistry of the Metal-Gas Interface, Oxford: Clarendon Press, 1978.

    Google Scholar 

  11. Frumkin, A.N., Izbrannye trudy. Elektrodnye protsessy (Selected Scientific Works. Electrode Processes), Moscow: Nauka, 1987.

  12. Khaldeev, G.V., Strukturnaya korroziya metallov (Structural Metals Corrosion), Perm: Perm State Univ., 1994.

  13. Horiuti, J. and Polanyi, U., Acta Physicochim. URSS, 1935, vol. 2, no. 4, p. 505.

    Google Scholar 

  14. Remy, H., Treatise on Inorganic Chemistry, Amsterdam, New York: Elsevier, 1956.

    Google Scholar 

  15. Andreev, Yu.Ya. and Bobkov T.V. Prot. Met. Phys. Chem. Surf., 2015, vol. 51, p. 730.

    Article  Google Scholar 

  16. Andreev, Yu.Ya., Elektrokhimiya metallov i splavov (Electrochemistry of Metals and Alloys), Moscow: Vysshee Obrazovanie i Nauka, 2016.

  17. Damaskin, B.B., Petrii, O.A., and Tcirlina, G.A. Elektrohimia (Electrochemistry), Moscow: KolosS, 2008.

  18. Sato, N. and Okamoto, G., J. Electrochem. Soc., 1963, vol. 110, p. 605.

    Article  Google Scholar 

  19. Haupt, S. and Strehblow, H.-H., J. Electroanal. Chem., 1987, vol. 228, p. 365.

    Article  Google Scholar 

  20. Uhlig, H.H., Corrosion and Corrosion Control, New York: Wiley, 1962.

    Google Scholar 

  21. Kolotyrkin, Ya.M., Z. Elektrochem., 1958, vol. 62, p. 664.

    Google Scholar 

  22. Hoppe, H.-W. and Strehblow, H.-H., Surf. Interface Anal., 1989, vol. 14, p. 121.

    Article  Google Scholar 

  23. Andreev, Ya.Ya., Safonov, I.A., and Doub, A.V., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, p. 509.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Ya. Andreev.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, Y.Y., Safonov, I.A. & Doub, A.V. Application of Scale of Absolute Surface Potentials to the Reactions of Chemisorption and Electrocatalysis on Metals. Part 2. Prot Met Phys Chem Surf 55, 1–8 (2019). https://doi.org/10.1134/S2070205119010039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205119010039

Keywords:

Navigation