The Composition and Physicochemical Properties of PbO2–TiO2 Composite Materials Deposited from Colloid Electrolytes

Abstract

The effect of the deposition conditions from colloid electrolytes on the chemical and phase composition, texture and electrocatalytic activity of PbO2–TiO2 composite materials was studied. The composition of the composites depends on the electrolysis regimes, the charge of the dispersed phase particles and the electrode, as well as the precipitation rate of lead dioxide, and the concentration of the components in the solution. By varying the electrolysis regimes and the composition of the electrolyte, composites with a TiO2 content of up to 27 wt % can be obtained. The phase composition and texture of the resulting composites are determined by the electrolysis regimes and the composition of the electrolytes used. In addition, the presence of TiO2 particles in the electrolyte leads, as a rule, to a decrease in crystal size and an increase in the content of α-phase of lead dioxide in the precipitate. Introduction of valve metal oxide particles into the lead dioxide materials generally results in an increase in OER overvoltage and in the rate of p-nitroaniline oxidative degradation due increasing the number of oxygen-bound particles firmly bound to the electrode surface and the parallel flow of photocatalytic processes at TiO2 centers, providing additional quantity of oxygen-containing oxidants of radical and peroxide nature. The use of composite materials as an active and transition layer of low-wearing anodes makes it possible to obtain electrodes with a long service lifetime.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. 1

    Casellato, U., Cattarin, S., and Musiani, M., Electrochim. Acta, 2003, vol. 48, no. 10, pp. 3991–3998.

    Article  Google Scholar 

  2. 2

    Cattarin, S. and Musiani, M., Electrochim. Acta, 2006, vol. 52, no. 4, pp. 1339–1348.

    Article  Google Scholar 

  3. 3

    Cattarin, S., Frateur, I., Guerriero, P., et al., Electrochim. Acta, 2000, vol. 45, no. 9, pp. 2279–2288.

    Article  Google Scholar 

  4. 4

    Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., et al., Mater. Chem. Phys., 2012, vol. 131, pp. 686–693.

    Article  Google Scholar 

  5. 5

    Velichenko, A., Knysh, V., Luk’yanenko, T., et al., Chem. Chem. Technol., 2012, vol. 6, pp. 123–133.

    Google Scholar 

  6. 6

    Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., et al., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 3, pp. 327–332.

    Article  Google Scholar 

  7. 7

    Amadelli, R., Samiolo, L., Velichenko, A.B., et al., Electrochim. Acta, 2009, vol. 54, no. 22, pp. 5239–5245.

    Article  Google Scholar 

  8. 8

    Velichenko, A.B., Amadelli, R., Knysh, V.A., et al., J. Electroanal. Chem., 2009, vol. 632, pp. 192–196.

    Article  Google Scholar 

  9. 9

    Li, X., Pletcher, D., and Walsh, F.C., Chem. Soc. Rev., 2011, vol. 40, pp. 3879–3894.

    Article  Google Scholar 

  10. 10

    Pletcher, D., Zhou Hantao, Kear, G., et al., J. Power Sources, 2008, vol. 180, pp. 630–634.

    Article  Google Scholar 

  11. 11

    Knysh, V.A., Luk’yanenko, T.V., Nikolenko, N.V., et al., Bull. Dnipropetr. Univ. Ser. Chem., 2016, vol. 24, no. 10, pp. 20–26. doi 10.15421/081604

    Article  Google Scholar 

  12. 12

    Velichenko, A.B., Knysh, V.A., Luk’yanenko, T.V., et al., Teor. Eksp. Khim., 2016, vol. 52, no. 2, pp. 125–129.

    Google Scholar 

  13. 13

    Knysh, V., Luk’yanenko, T., Shmychkova, O., et al., J. Solid State Electrochem., 2017, vol. 21, pp. 537–544.

    Article  Google Scholar 

  14. 14

    Campbell, S.A. and Peter, L.M., J. Electroanal. Chem., 1991, vol. 306, nos. 1–2, pp. 185–194.

    Article  Google Scholar 

  15. 15

    Velichenko, A.B., Amadelli, R., Gruzdeva, E.V., et al., J. Power Sources, 2009, vol. 191, pp. 103–110.

    Article  Google Scholar 

  16. 16

    Shmychkova, O.B., Luk’yanenko, T.V., Velichenko, A.B., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, pp. 593–599.

    Article  Google Scholar 

  17. 17

    Shmychkova, O., Luk’yanenko, T., Piletska, A., et al., J. Electroanal. Chem., 2015, vol. 746, pp. 57–61.

    Article  Google Scholar 

  18. 18

    Shmychkova, O., Luk’yanenko, T., Velichenko, A., et al., J. Electroanal. Chem., 2013, vol. 706, pp. 86–92.

    Article  Google Scholar 

  19. 19

    Shmychkova, O., Luk’yanenko, T., Amadelli, R., et al., J. Electroanal. Chem., 2014, vol. 196, pp. 717–718.

    Google Scholar 

  20. 20

    Low, C.T.J., Pletcher, D., and Walsh, F.C., Electrochem. Commun., 2009, vol. 11, pp. 1301–1304.

    Article  Google Scholar 

  21. 21

    Amadelli, R., Maldotti, A., Velichenko, A.B., et al., J. Electroanal. Chem., 2002, vol. 534, pp. 1–12.

    Article  Google Scholar 

  22. 22

    Pavlov, D. and Monahov, B., J. Electrochem. Soc., 1998, vol. 45, pp. 70–77.

    Article  Google Scholar 

  23. 23

    Monahov, B., Pavlov, D., and Petrov, D., J. Power Sources, 2000, vol. 85, pp. 59–62.

    Article  Google Scholar 

  24. 24

    Pavlov, D. and Monahov, B., J. Electrochem. Soc., 1996, vol. 143, pp. 3616–3629.

    Article  Google Scholar 

  25. 25

    Pech, D., Brousse, T., Belanger, D., et al., Electrochim. Acta, 2009, vol. 54, pp. 7382–7388.

    Article  Google Scholar 

  26. 26

    Trassatti, S. and Lodi, G., Electrodes of Conductive Metallic Oxide, Amsterdam, Oxford, New York: Elsevier, 1981, part B, pp. 521–626.

  27. 27

    Johnson, D.C., Feng, J., and Houk, L.L., Electrochim. Acta, 2000, vol. 46, pp. 323–330.

    Article  Google Scholar 

  28. 28

    Kawagoe, K.T. and Johnson, D.C., J. Electrochem. Soc., 1994, vol. 141, pp. 3404–3409.

    Article  Google Scholar 

  29. 29

    Liu, Y. and Liu, H., Electrochim. Acta, 2008, vol. 53, pp. 5077–5083.

    Article  Google Scholar 

  30. 30

    Panizza, M. and Cerisola, G., Chem. Rev., 2009, vol. 109, pp. 6541–6569.

    Article  Google Scholar 

  31. 31

    Chaplin, B.P., Environ. Sci.: Processes Impacts, 2014, vol. 16, pp. 1182–1203.

    Google Scholar 

  32. 32

    Borras, C., Laredo, T., and Scharifker, B.R., Electrochim. Acta, 2003, vol. 48, pp. 2775–2780.

    Article  Google Scholar 

  33. 33

    Amadelli, R., Samiolo, L., De Battisti, A., et al., J. Electrochem. Soc., 2011, vol. 158, pp. 87–92.

    Article  Google Scholar 

  34. 34

    Shmychkova, O., Luk’yanenko, T., and Yakubenko, A., et al., Appl. Catal., B, 2015, vol. 162, p. 346–351.

    Article  Google Scholar 

  35. 35

    Guoting Li, Jiuhui Qu, Xiwang Zhang, et al., Water Res., 2006, vol. 40, no. 4, pp. 213–220.

    Article  Google Scholar 

  36. 36

    Kasian, O.I., Luk’yanenko, T.V., and Velichenko, A.B., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 5, pp. 559–566.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. A. Knysh or A. B. Velichenko.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Knysh, V.A., Luk’anenko, T.V., Demchenko, P.Y. et al. The Composition and Physicochemical Properties of PbO2–TiO2 Composite Materials Deposited from Colloid Electrolytes. Prot Met Phys Chem Surf 54, 1038–1046 (2018). https://doi.org/10.1134/S2070205118060163

Download citation

Keywords:

  • colloid methanesulfonate electrolytes
  • PbO2–TiO2 composites
  • electrocatalysis
  • anodes operation life