Fabrication of Superhydrophobic Al5083 Aluminum Alloy for Marine Applications

Abstract

Considering the importance of Al5083 as a most used and most promising aluminium alloy in vessels hull and marine systems, the focus of this research is on access to superhydrophobic coatings on this alloy by economical and efficient two step method composed of anodizing and chemical modification with silane. Al5XXX series of Al alloys including Al5083 have been widely used in marine industries such as fast ferries and ship building. In the present research, for fabricating superhydrophobic coatings on the aluminum alloy (Al5083) surface, anodizing in sulfuric acid and chemical modification of triethoxy octyl silane (KH-832) and 1H, 1H, 2H, 2H–perfluorooctyl trichloro silane (PFOTS), was employed. Surface characterization was carried out by scanning electron microscopy (SEM), atomic force microscopy (AFM), and ATR-FTIR tests. Also, the wettability of superhydrophobic coatings was evaluated using static wettability test. Static wetting and contact angle hysteresis tests on the aluminum alloy surfaces provided a high contact angle (about 170 and 160 degrees) and low contact angle hysteresis (about 3 and 9 degrees) respectively by modification with KH- 832 and PFOTS as a non-wettable surface. The ATR-FTIR analysis after surface chemical modification with KH-832 and PFOTS showed functionalized groups.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Liu, W., Luo, Y., Sun, L., et al., Adv. Mater. Res., 2012, vol. 583, p.338.

    Article  Google Scholar 

  2. 2.

    Xia, F., Jiang, L., and Xia, B.F., Adv. Mater., 2008, vol. 20, p. 2842.

    Article  Google Scholar 

  3. 3.

    Sun, T., Feng, L., Gao, X., and Jiang, L., Acc. Chem. Res., 2005, vol. 38, p.644.

    Article  Google Scholar 

  4. 4.

    Bhushan, B., Jung, Y.C., and Koch, K., Philos. Trans. R. Soc., A, 2009, vol. 367, p. 1631.

    Article  Google Scholar 

  5. 5.

    Fratzl, P. and Weinkamer, R., Prog. Mater. Sci., 2007, vol. 52, p. 1263.

    Article  Google Scholar 

  6. 6.

    Koch, K., Bhushan, B., and Barthlott, W., Soft Matter, 2008, vol. 4, p. 1943.

    Article  Google Scholar 

  7. 7.

    Gorb, N., Functional Surfaces in Biology, Springer, 2009, vol.2.

  8. 8.

    Darmanin, T. and Guittard, F., Mater. Today, 2015, vol. 18, p.273.

    Article  Google Scholar 

  9. 9.

    Jelinek, R., Nanoparticles, De Gruyter Textbook, Walter de Gruyter, 2013.

    Google Scholar 

  10. 10.

    Dujardin, E. and Mann, S., Adv. Mater., 2002, vol. 14, p.775.

    Article  Google Scholar 

  11. 11.

    Bhushan, B., Langmuir, 2012, vol. 28, p. 1698.

    Article  Google Scholar 

  12. 12.

    Liu, X.Y., Bioinspiration: From Nano to MicroScales, Springer, 2012.

    Google Scholar 

  13. 13.

    Nosonovsky, M. and Bhushan, B., Curr. Opin. Colloid Interface Sci., 2009, vol. 14, p.270.

    Article  Google Scholar 

  14. 14.

    Ma, M. and Hill, R.M., Curr. Opin. Colloid Interface Sci., 2006, vol. 11, p.193.

    Article  Google Scholar 

  15. 15.

    Darmanin, T., Tan, E., Givenchy, D., Amigoni, S., and Guittard, F., Adv. Mater., 2013, vol. 25, p. 1378.

    Article  Google Scholar 

  16. 16.

    Celia, E., Darmanin, T., Tan, E., Givenchy, D., Amigoni, S., and Guittard, F., Colloid Interface Sci., 2013, vol. 402, p.1.

    Article  Google Scholar 

  17. 17.

    Feng, L., Li, S.H., Li, Y.S., et al., Adv. Mater., 2002, vol. 14, p. 1857.

    Article  Google Scholar 

  18. 18.

    Wagner, P., Rstner, R., Barthlott, W., and Neinhuis, C., J. Exp. Bot., 2003, vol. 54, p. 1295.

    Article  Google Scholar 

  19. 19.

    Bhushan, B. and Jung, Y., Prog. Mater. Sci., 2011, vol. 56, p.1.

    Article  Google Scholar 

  20. 20.

    Sarkar, D.K., Farzaneh, M., and Paynter, R.W., Appl. Surf. Sci., 2010, vol. 256, p. 3698.

    Article  Google Scholar 

  21. 21.

    Fu, X. and He, X., Appl. Surf. Sci., 2008, vol. 255, p. 1776.

    Article  Google Scholar 

  22. 22.

    Wu, R., Liang, S., Pan, A., et al., Appl. Surf. Sci., 2012, vol. 258, p. 5933.

    Article  Google Scholar 

  23. 23.

    https://doi.org/rtcndm.com.au/corrosion-of-marine-grade-aluminium.

  24. 24.

    Alwitt, R.S., in Oxides and Oxide Films, Diggle, J.W. and Vijh, A.K., Eds., New York: Marcel Dekker, 1976, vol.4.

  25. 25.

    Sabzi, M., Mirabedini, S.M., Mehr, J.Z., and Atai, M., Prog. Org. Coat., 2009, vol. 65, p.222.

    Article  Google Scholar 

  26. 26.

    Ebrahim, M., Nada, A., and Kamal, D.E., Indian J. Pure Appl. Phys., 2005, vol. 43, p.911.

    Google Scholar 

  27. 27.

    Underhill, P.R. and Rider, A.R., Surf. Coat. Technol., 2005, vol. 192, p.199.

    Article  Google Scholar 

  28. 28.

    Wang, L., Liang, J., and He, L., J. Colloid Interface Sci., 2009, vol. 435, p.75.

    Article  Google Scholar 

  29. 29.

    Porchelvi, M. and Rajasekaran, R., Int. J. Eng. Sci. Res. Technol., 2017, vol. 6, no. 3, p.73.

    Google Scholar 

  30. 30.

    Ferguson, J.D., Weimer, A.W., and George, S.M., Chem. Mater., 2004, vol. 16, p. 5602.

    Article  Google Scholar 

  31. 31.

    Pliskin, W.A., J. Vac. Sci. Technol., 1977, vol. 14, p. 1064.

    Article  Google Scholar 

  32. 32.

    Catherine, Y. and Talebian, A., J. Electron. Mater., 1988, vol. 17, p.127.

    Article  Google Scholar 

  33. 33.

    Kim, Y.C., Park, H.H., Chun, J.S., and Lee, W.J., Thin Solid Films, 1994, vol. 237, p.57.

    Article  Google Scholar 

  34. 34.

    Seman, M.T., Richards, D.N., Rowlette, P., and Wolden, C.A., Chem. Vap. Deposition, 2008, vol. 14, p.296.

    Article  Google Scholar 

  35. 35.

    Tellez, C., Mendoza, G., Frutis, M., Flores, M.A., et al., Appl. Phys., 2008, vol. 103, p. 34105.

    Article  Google Scholar 

  36. 36.

    Jakoubková, M., Papoušková, Z., and Pola, J., Collect. Czech. Chem. Commun., 1977, vol. 42, p.471.

    Article  Google Scholar 

  37. 37.

    Jafari, R. and Farzaneh, M., Mater. Sci. Forum, 2012, vols. 706–709, p. 2874.

    Article  Google Scholar 

  38. 38.

    Nishino, T., Meguro, M., Nakamae, K., et al., Langmuir, 1999, vol. 15, p. 4321.

    Article  Google Scholar 

  39. 39.

    Nalwa, H.S., Surface and Interface Phenomena, vol. 1. of Handbook of Surfaces and Interfaces of Materials, Los Angeles, CA: Academic Press, 2001.

    Google Scholar 

  40. 40.

    Yin, B., Fang, L., Tang, A., et al., Appl. Surf. Sci., 2015, vol. 258, p.580.

    Article  Google Scholar 

  41. 41.

    Yong, X., Hou, C., Wu, J., et al., Corrosion, 2011, vol. 67, p.1.

    Google Scholar 

  42. 42.

    Ye, J., Yin, Q., and Zhou, O.Y., Thin Solid Films, 2009, vol. 517, p. 6012.

    Article  Google Scholar 

  43. 43.

    Xua, O.F. and Wang, J.N., New J. Chem., 2009, vol. 33, p. 734.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hamid Ghayour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fahim, J., Ghayour, H., Hadavi, S.M.M. et al. Fabrication of Superhydrophobic Al5083 Aluminum Alloy for Marine Applications. Prot Met Phys Chem Surf 54, 899–908 (2018). https://doi.org/10.1134/S2070205118050052

Download citation

Keywords

  • Al5083 marine alloy
  • superhydrophobic
  • surface modification
  • water contact angle
  • contact angle hysteresis