Advertisement

Corrosion of AD31 (AA6063) Alloy in Chloride-Containing Solutions

  • D. S. KharitonovEmail author
  • I. B. Dobryden’
  • B. Sefer
  • I. M. Zharskii
  • P. M. Claesson
  • I. I. Kurilo
Physicochemical Problems of Materials Protection

Abstract

Corrosion of AD31 (AA6063) alloy in neutral 0.05 M NaCl solutions is investigated via scanningprobe microscopy, linear-sweep voltammetry, and electrochemical-impedance spectroscopy. Al−Fe−Si−Mg intermetallic particles are determined to prevail in the structure of alloy and act as local cathodes. Intermodulation electrostatic-force-microscopy imaging shows that their Volta potential differs by 570 mV from that of the host aluminum matrix, making the alloy prone to localized corrosion. We show that the corrosion of alloy in the studied electrolyte mainly develops locally and results in pitting, with charge transfer being the limiting stage of the process. A mechanism of corrosion of the AD31 (AA6063) alloy in neutral chloride-containing solutions is proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Val’kov, V.S., Korroziya i zashchita alyuminievykh splavov (Corrosion and Protection of Aluminum Alloys), Moscow: Metallurgiya, 1986.Google Scholar
  2. 2.
    Beletskii, V.M., Alyuminievye splavy. Sostav, svoistva, tekhnologiya, primenenie (Aluminum Alloys. Composition, Properties, Technology, Application), Moscow: Komintekh 2005.Google Scholar
  3. 3.
    Yasakau, K.A., Handbook of Smart Coatings for Materials Protection, Cambridge: Woodhead Publ. 2014, p. 224.CrossRefGoogle Scholar
  4. 4.
    Eckermann, F., Suter, T., Uggowitzer, T.G., et al., Electrochim. Acta 2008, vol. 54, no. 2, p. 844.CrossRefGoogle Scholar
  5. 5.
    Barbucci, A., Bruzzone, B., Delucchi, M., et al., Intermetallics 2000, vol. 8, no. 3, p. 305.CrossRefGoogle Scholar
  6. 6.
    Mishra, A.K., Balasubramaniam, R., and Tiwari, S., Anti-Corros. Methods Mater. 2007, vol. 54, no 1, p. 37.CrossRefGoogle Scholar
  7. 7.
    Birbilis, N. and Buchheit, R.G., J. Electrochem. Soc., 2005, vol. 152, no. 4, p. 140.CrossRefGoogle Scholar
  8. 8.
    Leblanc, P. and Frankel, G.S., J. Electrochem. Soc., 2002, vol. 149, no. 6, p. 239.CrossRefGoogle Scholar
  9. 9.
    Park, J.O., J. Electrochem. Soc., 1999, vol. 146, no. 2, p. 517.CrossRefGoogle Scholar
  10. 10.
    Ilevbare, G.O., Scully, G.R., Schneder, O., and Kelly, R.G., J. Electrochem. Soc., 2004, vol. 151, no. 8, p. 453.CrossRefGoogle Scholar
  11. 11.
    Zhang, F., Nilsson, J.O., and Pan, J., J. Electrochem. Soc., 2016, vol. 163, no. 9, p. 609.CrossRefGoogle Scholar
  12. 12.
    Zeng, F.L., Wei, Z.L., Li, J.F., et al., Trans. Nonferrous Met. Soc. China 2011, vol. 21, no. 12, p. 2559.CrossRefGoogle Scholar
  13. 13.
    Mrówka-Nowotnik, G., Sieniawski, J., and Wierzbiñska, M., Arch. Mater. Sci. Eng. 2007, vol. 28, no. 2, p. 69.Google Scholar
  14. 14.
    Buchheit, R.G., J. Electrochem. Soc., 1995, vol. 142, no. 11, p. 3994.CrossRefGoogle Scholar
  15. 15.
    Yasakau, K.A., Zheludkevich, M.L., Lamaka, S.V., and Ferreira, M.G.S., Electrochim. Acta 2007, vol. 52, no. 27, p. 7651.CrossRefGoogle Scholar
  16. 16.
    Borgani, R., Forchheimer, D., Bergqvist, J., et al., Appl. Phys. Lett. 2014, vol. 105, no. 14, p. 143113.CrossRefGoogle Scholar
  17. 17.
    Sefer, B., Dobryden, I., Almqvist, N., et al., Corrosion 2017, vol. 73, no. 4, p. 394.CrossRefGoogle Scholar
  18. 18.
    McCafferty, E., Corros. Sci. 2003, vol. 45, no. 7, p. 1421.CrossRefGoogle Scholar
  19. 19.
    Reboul, M.C., Warner, T.J., Mayet, H., and Baroux, B., Corros. Rev. 2011, vol. 15, nos. 3–4, p. 471.Google Scholar
  20. 20.
    Wit, J.H.W. and Lenderink, H.J.W., Electrochim. Acta 1996, vol. 41, p. 1111.CrossRefGoogle Scholar
  21. 21.
    Wysocka, J., Krakowiak, S., Ryl, J., and Darowicki, K., J. Electroanal. Chem., 2016, vol. 778, p. 126.CrossRefGoogle Scholar
  22. 22.
    Elkin, V.V., Marshakov, A.I., Rybkina, A.A., and Maleeva, M.A., Russ. J. Electrochem. 2011, vol. 47, no. 2, p. 136.CrossRefGoogle Scholar
  23. 23.
    Shulman, J., Hue, Y.Y., Tsui, S., et al., Phys. Rev. B 2009, vol. 80, no. 13, p. 1.CrossRefGoogle Scholar
  24. 24.
    Lee, Y.L., Chu, Y.R., Li, W.C., and Lin, N.S., Corros. Sci. 2013, vol. 70, p. 74.CrossRefGoogle Scholar
  25. 25.
    Vogelsang, J. and Strunz, W., Electrochim. Acta 2001, vol. 46, nos. 24–25, p. 3619.Google Scholar
  26. 26.
    Iannuzzi, M. and Frankel, G.S., Corrosion 2007, vol. 63, no. 7, p. 672.CrossRefGoogle Scholar
  27. 27.
    Birbilis, N. and Buchheit, R.G., J. Electrochem. Soc., 2008, vol. 155, no. 3, p. 117.CrossRefGoogle Scholar
  28. 28.
    Guseva, O., Derose, J.A., and Schmutz, P., Electrochim. Acta 2013, vol. 88, p. 821.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. S. Kharitonov
    • 1
    • 2
    Email author
  • I. B. Dobryden’
    • 2
  • B. Sefer
    • 3
  • I. M. Zharskii
    • 1
  • P. M. Claesson
    • 2
    • 4
  • I. I. Kurilo
    • 5
  1. 1.Department of Chemistry, Technology of Electrochemical Production and Electronic Engineering MaterialsBelarusian State Technological UniversityMinskBelarus
  2. 2.Surface and Corrosion Science DivisionKTH Royal Institute of TechnologyStockholmSweden
  3. 3.Division of Materials ScienceLuleå University of TechnologyLuleåSweden
  4. 4.Division of Chemistry, Materials, and SurfacesRISE Research Institutes of SwedenStockholmSweden
  5. 5.Department of Physical, Colloid and Analytical ChemistryBelarusian State Technological UniversityMinskBelarus

Personalised recommendations