Evaluation of the Possibility of using Diatomite Natural Mineral as a Composite Agent in Acrylic Coating

  • Amir FarzanehEmail author
  • Mustafa Erol
  • Omer Mermer
  • Andrew J. Cobley
  • Shahin Khameneh Asl
New Substances, Materials and Coatings


In the present study the possibility of the commercially available acryl and diatomite earth (DE) mineral as a composite coating for corrosion protection of Mg alloys has been evaluated. The acrylic coating is used as a top coating in a wide field of applications like automotive, aerospace, medicine and electronics where it shows beneficial properties. Diatomite-dispersed acrylic paint was applied over the substrate by conventional spray technique with an air pressure of 3 kg cm−2. Firstly the acryl was mixed with hardener and then the DE was added to the mixture. Four types of coating with 0, 2, 4, 8 g/L DE have been prepared. The results show that adding up to 4 g/L of the DE improved the corrosion resistance and produced a coating with acceptable surface roughness.


acrylic coating diatomite earth natural mineral corrosion protection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mordike, B. and Ebert, T., Mater. Sci. Eng., A, 2001, vol. 302, p.37.CrossRefGoogle Scholar
  2. 2.
    Aghion, E., Bronfin, B., and Eliezer, D., J. Mater. Process. Technol., 2001, vol. 117, p.381.CrossRefGoogle Scholar
  3. 3.
    Kleiner, M. and Geiger, A., CIRP Ann.–Manuf. Technol., 2003, vol. 52, p.521.CrossRefGoogle Scholar
  4. 4.
    Makar, G. and Kruger, J., Int. Mater. Rev., 1993, vol. 38, p.138.CrossRefGoogle Scholar
  5. 5.
    Gray, J. and Luan, B., J. Alloys Compd., 2002, vol. 336, p.88.CrossRefGoogle Scholar
  6. 6.
    Hu, R.-G., Zhang, S., Bu, J.-F., et al., Prog. Org. Coat., 2012, vol. 73, p.129.CrossRefGoogle Scholar
  7. 7.
    Huo, H., Li, Y., and Wang, F., Corros. Sci., 2004, vol. 46, p. 1467.CrossRefGoogle Scholar
  8. 8.
    Gao, L., Zhang, C., Zhang, M., et al., J. Alloys Compd., 2009, vol. 485, p.789.CrossRefGoogle Scholar
  9. 9.
    Cheong, W.-J. and Luan, B.L., Corros. Sci., 2007, vol. 49, p. 1777.CrossRefGoogle Scholar
  10. 10.
    Liu, Z. and Gao, W., Surf. Coat. Technol., 2006, vol. 200, p. 5087.CrossRefGoogle Scholar
  11. 11.
    Gu, C., Lian, J., He, J., et al., Surf. Coat. Technol., 2006, vol. 200, p. 5413.CrossRefGoogle Scholar
  12. 12.
    Barbosa, D.P., Surf. Coat. Technol., 2009, vol. 203, p. 1629.CrossRefGoogle Scholar
  13. 13.
    Shi, Z., Song, G., and Atrens, A., Corros. Sci., 2006, vol. 48, p. 1939.CrossRefGoogle Scholar
  14. 14.
    Guo, H. and An, M., Appl. Surf. Sci., 2005, vol. 246, p.229.CrossRefGoogle Scholar
  15. 15.
    Zhao, L., Cui, C., Wang, Q., and Bu, S., Corros. Sci., 2010, vol. 52, p. 2228.CrossRefGoogle Scholar
  16. 16.
    Richey, B. and Burch, M., in Polymer Dispersions and Their Industrial Applications, Wiley-VCH, 2002, p.123.CrossRefGoogle Scholar
  17. 17.
    Singh, B.P., Jena, B.K., Bhattacharjee, S., and Besra, L., Surf. Coat. Technol., 2013, vol. 232, p.475.CrossRefGoogle Scholar
  18. 18.
    Chawla, S.L. and Gupta, R.K., Materials Selection for Corrosion Control, Materials Park, OH: ASM Int., 1993.Google Scholar
  19. 19.
    Bierwagen, G.P., Electrochim. Acta, 1992, vol. 37, p. 1471.CrossRefGoogle Scholar
  20. 20.
    Bierwagen, G.P., Prog. Org. Coat., 1991, vol. 19, p.59.CrossRefGoogle Scholar
  21. 21.
    Elrebii, M., Kamoun, A., and Boufi, S., Prog. Org. Coat., 2015, vol. 87, p.222.CrossRefGoogle Scholar
  22. 22.
    Wang, S., Li, W., Han, D., et al., RSC Adv., 2015, vol. 5, p. 81759.CrossRefGoogle Scholar
  23. 23.
    Li, J., Ecco, L., Ahniyaz, A., et al., J. Electrochem. Soc., 2015, vol. 162, p. C610.CrossRefGoogle Scholar
  24. 24.
    Raja, V., Venugopal, A., Saji, V., et al., Prog. Org. Coat., 2010, vol. 67, p.12.CrossRefGoogle Scholar
  25. 25.
    Radhakrishnan, S., Siju, C., Mahanta, D., et al., Electrochim. Acta, 2009, vol. 54, p. 1249.CrossRefGoogle Scholar
  26. 26.
    Montemor, M., Pinto, R., and Ferreira, M., Electrochim. Acta, 2009, vol. 4, p. 5179.CrossRefGoogle Scholar
  27. 27.
    Selim, A. and El-Midany, A., Technol. Appl. Educ., 2010, vol. 3, p. 2174.Google Scholar
  28. 28.
    Ibrahim, S.S., J. Int. Environ. Appl. Sci., 2012, vol. 7, p.191.Google Scholar
  29. 29.
    Ciullo, P.A., Industrial Minerals and Their Uses: Handbook and Formulary, Norwich, NY: William Andrew, 1996.Google Scholar
  30. 30.
    Dhawan, S., Kumar, A., Bhandari, H., et al., Am. J. Polym. Sci., 2015, vol. 5, p.7.Google Scholar
  31. 31.
    Farzaneh, A., Ehteshamzadeh, M., and Mohammadi, M., J. Appl. Electrochem., 2011, vol. 41, p.19.CrossRefGoogle Scholar
  32. 32.
    Farzaneh, A., Mohammadi, M., Ehteshamzadeh, M., and Mohammadi, F., Appl. Surf. Sci., 2013, vol. 276, p. 697.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Amir Farzaneh
    • 1
    Email author
  • Mustafa Erol
    • 2
  • Omer Mermer
    • 3
  • Andrew J. Cobley
    • 4
  • Shahin Khameneh Asl
    • 5
  1. 1.Young Researchers and Elite Club, Karaj BranchIslamic Azad UniversityKarajIran
  2. 2.Department of Material Science and Engineering, Faculty of Engineering and ArchitectureIzmir Katip Celebi UniversityIzmirTurkey
  3. 3.Department of Electrical Engineering and ElectronicsEge UniversityİzmirTurkey
  4. 4.The Functional Materials Research Group, Centre for Manufacturing and Materials Engineering, Faculty of Engineering Environment and ComputingCoventry UniversityCoventryUK
  5. 5.Department of materials engineeringFaculty of Mechanical Engineering university of TabrizTabrizIran

Personalised recommendations