Skip to main content
Log in

Anodic Behavior of a Titanium–Aluminum Hybrid Electrode: Formation of Hydroxide-Oxide Compounds

  • New Substances, Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The electrochemical behavior of a titanium–aluminum hybrid electrode in aqueous solutions of electrolytes containing halide ions (F and Cl) was studied. The effects of current density, solution composition, and ratio of the working surface area of titanium and aluminum on the anodic dissolution rate of a Ti‒Al hybrid electrode and its electrochemical characteristics were revealed. The joint anodic dissolution of aluminum and titanium in the aqueous media under study made it possible to obtain precursors of the highly disperse oxide system Al2O3–TiO2. Data of X-ray and electron-microscopic analysis confirmed the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii (Nanomaterials, Nanostructures, Nanotechnologies), Moscow: FIZMATLIT, 2007.

    Google Scholar 

  2. Mor, G.K., Shankar, K., Paulose, M., et al., Nano Lett., 2006, vol. 6, no. 2, p.215.

    Article  Google Scholar 

  3. Chauhan, R., Kushwaha, R., and Bahadur, L., Mater. Chem. Phys., 2013, vol. 139, nos. 2–3, p.525.

    Article  Google Scholar 

  4. Xiong, Y., Tang, Z., Wang, Y., et al., J. Adv. Ceram., 2015, vol. 4, no. 2, p.152.

    Article  Google Scholar 

  5. Zhu, J., Liu, X., Wang, X., et al., Sens. Actuators, B, 2015, vol. 221, no. 1, p.450.

    Article  Google Scholar 

  6. Liu, L., Chen, H., and Yang, F., Sep. Purif. Technol., 2014, vol. 133, p.22.

    Article  Google Scholar 

  7. Huang, M., Chen, Y., Huang, C.-H., et al., Chem. Eng. J., 2015, vol. 279, p.904.

    Article  Google Scholar 

  8. Yang, W.-E., Hsu, M.-L., Lin, M.-C., et al., J. Alloys Compd., 2009, vol. 479, nos. 1–2, p.642.

    Article  Google Scholar 

  9. Pan, X., Yang, M.Q., Fu, X., et al., Nanoscale, 2013, vol. 5, p. 3601.

    Article  Google Scholar 

  10. Zunic, V., Skapin, S.D., and Suvorov, D., J. Am. Ceram. Soc., 2015, vol. 98, no. 10, p. 2997.

    Article  Google Scholar 

  11. Wu, J.M., J. Cryst. Growth, 2004, vol. 269, nos. 2–4, p.347.

    Article  Google Scholar 

  12. Gong, D., Grimes, C.A., and Varghese, O.K., Mater. Res. Soc., 2001, vol. 16, no. 12, p. 3331

    Article  Google Scholar 

  13. Liu, G., Wang, K., Hoivik, N., and Jakobsen, H., Sol. Energy Mater. Sol. Cells, 2012, vol. 98, pp. 24–38.

    Article  Google Scholar 

  14. Kelkar, G.P. and Carim, A.H., J. Am. Ceram. Soc., 1995, vol. 78, no. 3, p.572.

    Article  Google Scholar 

  15. Das, K., Choudhury, P., and Das, S., J. Phase Equilib. Diffus., 2002, vol. 23, no. 6, p.525.

    Article  Google Scholar 

  16. Gu, Z., Luo, L., and Chen, S., Indian J. Chem. Technol., 2009, vol. 16, no. 2, p.175.

    Google Scholar 

  17. Abd El All, S. and El-Shobaky, G.A., J. Alloys Compd., 2009, vol. 479, nos. 1–2, p.91.

    Article  Google Scholar 

  18. Starowicz, M. and Stypula, B., Eur. J. Inorg. Chem., 2008, vol. 2008, no. 6, p.869.

    Article  Google Scholar 

  19. Starowicz, M., Starowicz, P., and Stypula, B., J. Solid State Electrochem., 2014, vol. 18, p. 3065.

    Article  Google Scholar 

  20. Tomashov, N.D. and Chernova, G.P., Teoriya korrozii i korrozionno-stoikie konstruktsionnye splavy (Theory of Corrosion and Corrosion-Resistant Structure Alloys), Moscow: Metallurgiya, 1986.

    Google Scholar 

  21. Yakimenko, L.M., Elektrodnye materialy v prikladnoi elektrokhimii (Electrode Materials in Applied Electrochemistry), Moscow: Khimiya, 1977.

    Google Scholar 

  22. Tomashov, N.D. and Al’tovskii, R.M., Korroziya i zashchita titana (Corrosion and Protection of Titanium), Moscow: Mashgiz, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. O. Grigoryeva.

Additional information

Original Russian Text © A.F. Dresvyannikov, I.O. Grigoryeva, L.R. Khairullina, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 6, pp. 623–631.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dresvyannikov, A.F., Grigoryeva, I.O. & Khairullina, L.R. Anodic Behavior of a Titanium–Aluminum Hybrid Electrode: Formation of Hydroxide-Oxide Compounds. Prot Met Phys Chem Surf 53, 1050–1058 (2017). https://doi.org/10.1134/S2070205117060090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117060090

Keywords

Navigation