Skip to main content
Log in

Supramolecular formations and structural transformations in porous polyethersulfone/polyamide film materials

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Structural properties of an ESPA-type polyethersulfone/polyamide film is studied by the method of X-ray diffractometry in the region of wide angles, and it is established that there is a slight decrease in the X-ray degree of crystallinity (DC) in the process of its water swelling. Data obtained by the method of smallangle X-ray scattering (SAXS) indicate that the sorption space of the amorphous phase of the ESPA film is formed, in fact, by three kinds of pores with different surface morphology. The pores of a smaller radius are capillaries with a smoother surface, and the large pores are channels with a “dissected” surface. Differential scanning calorimetry (DSC) studies reveal a bimodal endothermic peak at temperatures of 250 and 254°C, which is attributable to the melting of crystalline phases. A decrease in the degree of crystallinity upon the water sorption is associated with redistributing the proportion between structurally perfect crystalline phases with different melting enthalpy values in the crystallites of polyamide 6.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dorofeeva, L.I., Razdelenie i ochistka veshchestv membrannymi, obmennymi i elektrokhimicheskimi metodami (Separation and Purification of Substances with the help of Membrane, Exchange and Electrochemical Methods), Tomsk: Tomsk Polytechnic Univ., 2008.

    Google Scholar 

  2. Drazevic, E., Kosutic, K., and Freger, V, Water Res., 2014, vol. 49, p. 444.

    Article  Google Scholar 

  3. Tu, K.L., Chivas, A.R., and Nghiem, L.D, Membr. Water Treat., 2015, vol. 6, no. 2, p. 141.

    Article  Google Scholar 

  4. Yoon, Y. and Lueptow, R.M, J. Membr. Sci., 2005, vol. 261, p. 76.

    Article  Google Scholar 

  5. Nagarale, R.K., Gohil, G.S., and Shahi, V.K, Adv. Colloid Interface Sci., 2006, vol. 119, nos. 2–3, p. 97.

    Article  Google Scholar 

  6. Saxena, A., Gohil, G.S., and Shahi, V.K, Ind. Eng. Chem. Res., 2007, no. 46, p. 1270.

    Article  Google Scholar 

  7. Bowen, W.R. and Williams, P.M, Adv. Colloid Interface Sci., 2007, vols. 134–135, p. 3.

    Article  Google Scholar 

  8. Brans’, G., Schroën, C.G.P.H, Van der Sman, R.G.M., and Boom, R.M, J. Membr. Sci., 2004, vol. 243, p. 263.

    Article  Google Scholar 

  9. Mulder, M., Basic Principles of Membrane Technology, Dordrecht: Kluwer Academic Publ., 1996.

    Book  Google Scholar 

  10. Ochkina, K.A., Kulov, N.N., and Fomichev, S.V, Theor. Found. Chem. Eng., 1998, vol. 32, no. 1, p. 44.

    Google Scholar 

  11. Dubyaga, V.P., Perepechkin, L.P., and Katalevskii, E.E., Polimernye membrany (Polymer Membranes), Moscow: Khimiya, 1981.

    Google Scholar 

  12. Shipovskaya, A.B., Doctoral Sci. (Eng.) Dissertation, St. Petersburg, 2009.

    Google Scholar 

  13. Akberova, E.M. and Malykhin, M.D, Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no. 2, p. 232.

    Google Scholar 

  14. Vasil'eva, V.I., Kranina, N.A., Malykhin, M.D., et al, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech., 2013, vol. 7, no.1, p. 144.

    Article  Google Scholar 

  15. Volkov, N.V., Cand. Sci. (Eng.) Dissertation, Moscow: All-Russian Research and Development Institute of Starch Products, 2013.

    Google Scholar 

  16. Novakov, I.A. and Rakhimova, N.A, Izv. Volgogr. Gos. Tekh. Univ., 2009, vol. 2, no. 6, p. 5.

    Google Scholar 

  17. Avlar, S. and Qiao, Yu, Composites, Part A, 2005, vol. 36, p. 624.

    Article  Google Scholar 

  18. Nadol'skii, A.L., Rentgenografiya polimerov (X-Ray Radiography of Polymers), Yekaterinburg: Ural Federal Univ. Named after the First President of Russia B.N. Yeltsin, 2013.

    Google Scholar 

  19. Batyrshin, R.T., Cand. Sci. (Eng.) Dissertation, Kazan: Kazan National Research Technological Univ., 2013.

    Google Scholar 

  20. Lepeshin, S.A., Cand. Sci. (Eng.) Dissertation, Kazan: Kazan National Research Technological Univ., 2016.

    Google Scholar 

  21. Tsvankina, A.L., Cand. Sci. (Chem.) Dissertation, Moscow, 1985.

    Google Scholar 

  22. Svergun, D.I. and Feigin, L.A., Rentgenovskoe i neitronnoe malouglovoe rasseyanie (X-Ray and Neutron Small-Angle Scattering), Moscow: Nauka, 1986.

    Google Scholar 

  23. Lazarev, S.I., Bystritskii, V.S., Golovin, Yu.M., et al, Vestn. Dagest. Gos. Univ., 2012, no. 6, p. 234.

    Google Scholar 

  24. Karsakova, E.V. and Kravchenko, T.P, Usp. Khim. Khim. Tekhnol., 2008, vol. 22, no. 5, p. 10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lazarev.

Additional information

Original Russian Text © S.I. Lazarev, Yu.M. Golovin, O.A. Kovaleva, K.K. Polyanskii, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 5, pp. 491–498.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lazarev, S.I., Golovin, Y.M., Kovaleva, O.A. et al. Supramolecular formations and structural transformations in porous polyethersulfone/polyamide film materials. Prot Met Phys Chem Surf 53, 812–818 (2017). https://doi.org/10.1134/S2070205117050112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117050112

Navigation