Skip to main content
Log in

Sorption of copper, nickel and cadmium on bone char

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The sorption capacity of bone char was tested on the removal of copper, nickel and cadmium ions, from aqueous solutions. The Freundlich and Langmuir models were applied to the adsorption isotherms. The equilibrium data fitted well with the Langmuir model and the maximum loading capacities showed the following affinity order: Cu2+ (1.093 mmol g–1 at pH i 3, and 0.884 mmol g–1 at pH i 4) > Cd2+ (0.760 mmol g–1 at pH i 3, and 0.690 mmol g–1 at pH i 4) > Ni2+ (0.453 mmol g–1 at pH i 3, and 0.225 mmol g–1 at pH i 4). The kinetic data follow a diffusion model in the film and inside particles. A sorption mechanism based on ion exchange, attack by protons of the carbonate and hydroxide positions in the apatite lattice, and also on the adsorption of protons on the basic active sites of carbon, is proposed to explain the heavy metals removal and the pH decreasing in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHO/FAO/IAEA, Geneva: World Health Organization, 1996.

  2. Vassilev, S.V., Baxter, D., Andersen, L.K., et al., Fuel, 2012, vol. 94, p. 1.

    Article  Google Scholar 

  3. Williams, D.M., Clinical Significance of Copper Deficiency and Toxicity in the World Population, New York: Alan R. Liss, 1982.

    Google Scholar 

  4. Sivulka, D.J., Regul. Toxicol. Pharmacol., 2005, vol. 43, p. 117.

    Article  Google Scholar 

  5. Swaddiwudhipong, W., Limpatanachote, P., Mahasakpan, P., et al., Environ. Res., 2012, vol. 112, p. 194.

    Article  Google Scholar 

  6. Leeden, M.C.V., Troise, F.L., and Todd, D.K., The Water Encyclopedia, Michigan: Lewis Publ., 1990.

    Google Scholar 

  7. He, Z.L., Yang, X.E., and Stoffella, P.J., J. Trace Elem. Med. Biol., 2005, vol. 19, p. 125.

    Article  Google Scholar 

  8. Goyer, R.A., in Cassarett and Doull’s Toxicology: The Basic Science of Poisons, Klaassen, C.D., Ed., New York: McGraw-Hill, 2001.

    Google Scholar 

  9. Herawati, N., Suzuki, S., Hayashi, K., et al., Bull. Environ. Contam. Toxicol., 2000, vol. 64, p. 33.

    Article  Google Scholar 

  10. Olayinka, K.O., Alo, B.I., and Adu, T., J. Appl. Sci., 2007, vol. 7, p. 2307.

    Article  Google Scholar 

  11. Shallari, S., Schwartz, C., Hasko, A., and Morel, J.L., Sci. Total Environ., 1998, vol. 209, p. 133.

    Article  Google Scholar 

  12. Arruti, A., Fernández-Olmo, I., and Irabien, A., J. Environ. Monit., 2010, vol. 12, p. 1451.

    Article  Google Scholar 

  13. Pacyna, J.M., in Toxicology of Metals, Chang, L.W., Magos, L., and Suzuli, T., Eds., Boca Raton, FL: CRC Press, 1996, p. 9.

    Google Scholar 

  14. Christensen, R.E. and Delwiche, J.T., Water Res., 1982, vol. 6, p. 729.

    Article  Google Scholar 

  15. Seco, A., Marzal, P., and Gabaldón, C., J. Chem. Technol. Biotechnol., 1997, vol. 68, p. 23.

    Article  Google Scholar 

  16. Ferro-Garcia, M.A., Rivera-Utrilla, J., Rodriguez-Gordillo, J., and Bautista-Toledo, I., Carbon, 1998, vol. 26, p. 363.

    Article  Google Scholar 

  17. Bohli, T., Villaescusa, I., and Ouederni, A., J. Chem. Eng. Process Technol., 2013, vol. 4, p. 1.

    Article  Google Scholar 

  18. Acharya, J., Sahu, J.N., Mohanty, C.R., and Meikap, B.C., Chem. Eng. J., 2009, vol. 149, p. 249.

    Article  Google Scholar 

  19. Macdonald, A.I., Publ. Tech. Pap. Proc. Annu. Meet. Sugar Ind. Technol., 1975, vol. 34, p. 58.

    Google Scholar 

  20. Celle, R. and Herve, D., Ind. Alim. Agric., 1980, vol. 97, p. 701.

    Google Scholar 

  21. Bhargava, D.S. and Killedar, S.D., Res. J. Water Pollut. Control Fed., 1991, vol. 63, p. 848.

    Google Scholar 

  22. Xu, Y. and Schwartz, F.W., Environ. Sci. Technol., 1994, vol. 28, p. 1472.

    Article  Google Scholar 

  23. Chen, X., Wright, J.V., Conca, J.L., and Peurrung, L.M., Environ. Sci. Technol., 1997, vol. 31, p. 624.

    Article  Google Scholar 

  24. Wakamura, M., Kandori, K., and Ishikawa, T., Colloids Surf., A, 1998, vol. 142, p. 107.

    Article  Google Scholar 

  25. Langmuir, I., J. Am. Chem. Soc., 1916, vol. 38, p. 2221.

    Article  Google Scholar 

  26. Freundlich, H.M.F., Z. Phys. Chem., 1906, vol. 57, p. 385.

    Google Scholar 

  27. Gomes, C.M.P., Recovery of Gold by Ion Exchange with Resins, Oporto Univ., 1996.

    Google Scholar 

  28. Milonjic, S.K., Cerovi, L.S., Cokeša, D.M., and Zec, S., J. Colloid Interface Sci., 2007, vol. 309, p. 155.

    Article  Google Scholar 

  29. Recillas, S., Rodríguez-Lugo, V., Montero, M.L., et al., J. Ceram. Process. Res., 2012, vol. 13, p. 5.

    Google Scholar 

  30. Brundavanam, R.K., Poinern, G.E.J., and Fawcett, D., Am. J. Mater. Sci., 2013, vol. 3, p. 84.

    Google Scholar 

  31. Legeros, R., Trautz, O., Klein, E., and Legeros, J., Specialia Exper., 1969, vol. 25, p. 5.

    Google Scholar 

  32. Ivanovic, M.S., Smiciklas, I., and Pejanovic, S., Chem. Eng. J., 2013, vol. 223, p. 833.

    Article  Google Scholar 

  33. Persson, I., Pure Appl. Chem., 2010, vol. 82, p. 1901.

    Article  Google Scholar 

  34. Pasquarello, A., Petri, I., Salmon, P.S., et al., Science, 2001, vol. 291, p. 856.

    Article  Google Scholar 

  35. Bustamante, M., Valencia, I., and Castro, M., J. Phys. Chem. A, 2011, vol. 115, p. 4115.

    Article  Google Scholar 

  36. Bryantsev, V.S., Diallo, M.S., and Goddard, W.A., J. Phys. Chem. A, 2009, vol. 113, p. 9559.

    Article  Google Scholar 

  37. Pye, C.C., Tomney, M.R., and Rudolph, W.W., Can. J. Anal. Sci. Spectrosc., 2006, vol. 51, p. 140.

    Google Scholar 

  38. Jeanjean, J., Vincent, U., and Fedoroff, M., J. Solid State Chem., 1994, vol. 108, p. 68.

    Article  Google Scholar 

  39. Lurtwitayapont, S. and Srisatit, T., EnvironmentAsia, 2010, vol. 3, p. 32.

    Google Scholar 

  40. Moreno, J.C., Gomez, R., and Giraldo, L., Materials, 2010, vol. 3, p. 452.

    Article  Google Scholar 

  41. Dean, J.-A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. I. Martins.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, J.I., Órfão, J.J.M. & Soares, O.S.G.P. Sorption of copper, nickel and cadmium on bone char. Prot Met Phys Chem Surf 53, 618–627 (2017). https://doi.org/10.1134/S2070205117040153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117040153

Keywords

Navigation