Skip to main content
Log in

The effect of mechanical activation on the structure and sorption activity of chitin

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

A mechanical activation of chitin suspended in water has been employed under conditions of a combined impact of cavitation and high shear stresses realized in a rotor-pulse device. For chitin samples that underwent preliminary activation for 5–20 s, the value of sorption capacity toward copper ions increased twoto fourfold in dependence on the treatment duration as compared to the initial sample. The experimental data corroborating that the main factors of mechanical activation are the increase of the specific surface area, porosity, and particle-chitin amorphization are presented. It has been established that the increase of the duration of mechanical treatment over the experimentally determined optimal value yields a decrease of the activation effect, which is related to the processes of restructuring and recrystallization. It has been shown that the Langmuir model allows rather adequate description of the sorption process with the correlation coefficient of 0.98–0.99.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rinaudo, M, Prog. Polym. Sci., 2006, vol. 31, p. 603.

    Article  Google Scholar 

  2. Gorovoi, L.F. and Kosyakov, V.N., in Khitin i khitozan: poluchenie, svoistva i primenenie (Chitin and Chitosan: Production, Properties and Application), Skryabin, K.G., Vikhoreva, G.A., and Varlamov, V.P., Eds., Moscow: Nauka, 2002, p. 217.

  3. Roberts, G.A.F., Chitin Chemistry, Basingstoke: Macmillan Press, 1992.

    Book  Google Scholar 

  4. Sukhov, N.L., Ershov, B.G., Bykov, G.L., and Seliverstov, A.F, Izv. Akad. Nauk, Ser. Khim., 1992, no. 10, p. 2305.

    Google Scholar 

  5. Dotto, G.L., Santos, J.M.N., Rodrigues, I.L., et al., J. Colloid Interface Sci., 2015, vol. 446, p. 133.

    Article  Google Scholar 

  6. Kumirska, J., Czerwicka, M., Kaczyński, Z., et al, Mar. Drugs, 2010, vol. 8, p. 1567.

    Article  Google Scholar 

  7. Dotto, G.L., Cunha, J.M., Calgaro, C.O., et al, J. Hazard. Mater., 2015, vol. 295, p. 29.

    Article  Google Scholar 

  8. von Sonntag, C, Adv. Carbohydr. Chem. Biochem., 1980, vol. 37, p. 7.

    Article  Google Scholar 

  9. Vikhoreva, G.A., Gorbacheva, I.N., and Gal’braikh, L.S, Khim. Volokna, 1994, no. 5, p. 37.

    Google Scholar 

  10. Campana-Filho, S.P., Signini, R., and Cardoso, M.B, Int. J. Polym. Mater., 2002, vol. 51, p. 695.

    Article  Google Scholar 

  11. de Delezuk, J.A., Cardoso, M.B., Domard, A., and Campana-Filho, S.P, Polym. Int., 2011, vol. 60, p. 903.

    Article  Google Scholar 

  12. Fiamingo, A., de Delezuk, J.A., Trombotto, S., et al, Ultrason. Sonochem., 2016, vol. 32, p. 79.

    Article  Google Scholar 

  13. Birolli, W.G., de Delezuk, J.A., and Campana-Filho, S.P, Appl. Acoust., 2016, vol. 103, p. 239.

    Article  Google Scholar 

  14. Badikov, Yu.V., Pilyugin, V.S., and Valitov, R.B., Ispol’zovanie apparatov gidroakusticheskogo vozdeistviya v geterofaznykh protsessakh (Application of Hydro-Acoustic devices for Hetero-Phase Processes), Moscow: Khimiya, 2004.

    Google Scholar 

  15. Lipatova, I.M. and Moryganov, A.P., in Chemistry of Polysaccharides, Zaikov, G.E., Ed., Leiden: Brill Academic Publ., 2005, p. 294.

  16. Chervyakov, V.M. and Yudaev, V.F., Gidrodinamicheskie i kavitatsionnye yavleniya v rotornykh apparatakh (Hydrodynamic and Cavitational Phenomena in Rotary Units), Moscow: Mashinostroenie, 2007.

    Google Scholar 

  17. Liu, S., Sun, J., Yu, L., et al, Molecules, 2012, vol. 17, p. 4604.

    Article  Google Scholar 

  18. Brugnerottoa, J., Lizardib, J., Goycooleab, F.M., et al, Polymer, 2001, vol. 42, p. 3569.

    Article  Google Scholar 

  19. Kokotov, Yu.A. and Pasechnik, V.A., Ravnovesie i kinetika ionnogo obmena (Equilibrium and Kinetics of Ion Exchange), Leningrad: Khimiya, 1970.

    Google Scholar 

  20. Akhnazarova, S.L. and Kafarov, V.V., Metody optimizatsii eksperimenta v khimicheskoi tekhnologii (Methods for Optimizing Experiment in Chemical Technology), Moscow: Vysshaya Shkola, 1985.

    Google Scholar 

  21. Cardoso, M.B., Signini, R., and Campana-Filho, S.P, Polym. Bull., 2001, vol. 47, p. 183.

    Article  Google Scholar 

  22. Margulis, M.A., Zvukokhimicheskie reaktsii i sonolyuminestsentsiya (Sonochemical Reactions and Sonoluminescence), Moscow: Khimiya, 1986.

    Google Scholar 

  23. Nikiforova, T.E. and Kozlov, V.A, Prot. Met. Phys. Chem. Surf., 2016, vol. 52, no. 3, p. 399.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Losev.

Additional information

Original Russian Text © N.V. Losev, T.E. Nikiforova, L.I. Makarova, I.M. Lipatova, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 5, pp. 480–485.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Losev, N.V., Nikiforova, T.E., Makarova, L.I. et al. The effect of mechanical activation on the structure and sorption activity of chitin. Prot Met Phys Chem Surf 53, 801–806 (2017). https://doi.org/10.1134/S2070205117040141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117040141

Navigation