Skip to main content
Log in

Characterization of newly synthesized starch coated Fe/Cu nanoparticles and its dechlorination efficiency on the low and high chlorinated biphenyls

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

New starch coated zero-valent Fe/Cu nanoparticles were synthesized by borate reduction method. The surface profile of synthesized nanoparticles was studied by atomic force microscopy (AFM) imaging. Comparison of Infra red (IR) spectra of soluble starch and starch coated Fe/Cu nanoparticle revealed the complex formation between Fe/Cu nanoparticles and soluble starch. X-ray diffraction pattern and Energy-dispersive X-ray spectroscopy (EDX) spectrum analysis exposed the composition of starch coated Fe/Cu nanoparticles. SEM imaging determined the size of Fe/Cu nanoparticle which was fallen into the size of 48 to 70 nm. In this study, the capability of starch coated Fe/Cu nanoparticle to degrade the low and high chlorinated biphenyls were studied extensively. It was observed that soluble starch and β-cyclodextrin have enhanced the polychlorinated biphenyl (PCB) degradation by preventing iron nano-agglomeration and making the PCB as a soluble form, respectively. The dechlorination was further confirmed by the estimation of released chloride ion during the PCB degradation. The present study suggested that this new method could be an efficient and reliable method to treat PCB contaminated soil and sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bai, G., Brusseau, M.L., and Miller, R.L., Appl. Environ. Microbiol., 1997, vol. 63, p. 1866.

    Google Scholar 

  2. Biswas, P. and Wu, C.Y., J. Air Waste Manage. Assoc., 2005, vol. 55, p. 708.

    Article  Google Scholar 

  3. Cao, J., Xu, R., Tang, H., et al., Sci. Total Environ., 2011, vol. 409, p. 2336.

    Article  Google Scholar 

  4. Cirwertny, D.M., Bransford, S.J., and Roberts, A.L., Environ. Sci. Technol., 2007, vol. 41, p. 3734.

    Article  Google Scholar 

  5. Clark, C.J., Rao, P.S.C., and Annable, M.D., J. Hazard. Mater., 2003, vol. 96, p. 65.

    Article  Google Scholar 

  6. Coleman, N.V., Mattes, T.E., Gossett, J.M., et al., Appl. Environ. Microbiol., 2002, vol. 68, p. 2726.

    Article  Google Scholar 

  7. Cundy, A.B., Hopkinson, L., and Whitby, R.L.D., Sci. Total Environ., 2008, vol. 400, p. 42.

    Article  Google Scholar 

  8. Dragunski, D.C. and Pawlicka, A., Mater. Res., 2001, vol. 4, p. 77.

    Article  Google Scholar 

  9. Gusmao, A.D., Campos, T.M.P., Nobre, M.M.M., et al., J. Hazard. Mater., 2004, vol. 110, p. 105.

    Article  Google Scholar 

  10. He, F. and Zhao, D., Environ. Sci. Technol., 2005, vol. 39, p. 3314.

    Article  Google Scholar 

  11. He, F. and Zhao, D.Y., Appl. Catal., B, 2008, vol. 84, p. 533.

    Google Scholar 

  12. Henn, K. and Waddill, D.W., Rem. J., 2006, vol. 16, p. 57.

    Article  Google Scholar 

  13. Kim, Y.H. and Carraway, E.R., Environ. Sci. Technol., 2000, vol. 34, p. 2014.

    Article  Google Scholar 

  14. Li, L., Fan, M., Brown, R.C., et al., Crit. Rev. Environ. Sci. Technol., 2006, vol. 36, p. 405.

    Article  Google Scholar 

  15. Lien, H.L., Elliott, D.S., Sun, Y.P., et al., J. Environ. Eng. Manage., 2006, vol. 16, p. 71.

    Google Scholar 

  16. Lin, C.J., Liou, Y.H., and Lo, S.L., Chemosphere, 2009, vol. 74, p. 314.

    Article  Google Scholar 

  17. Lowry, G.V. and Johnson, K.M., Environ. Sci. Technol., 2004, vol. 38, p. 5208.

    Article  Google Scholar 

  18. Miehr, R., Tratnyek, P.G., Bandstra, J.Z., et al., Environ. Sci. Technol., 2004, vol. 38, p. 139.

    Article  Google Scholar 

  19. Phenrat, T., Saleh, N., Sirk, K., et al., Environ. Sci. Technol., 2007, vol. 41, p. 284.

    Article  Google Scholar 

  20. Stumm, W. and Morgan, J.J., Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, New York: Wiley, 1996.

    Google Scholar 

  21. Tee, Y.H., Grulke, E., and Bhattacharyya, D., Ind. Eng. Chem. Res., 2005, vol. 44, p. 7062.

    Article  Google Scholar 

  22. Volkering, F., Breure, A.M., and Rulkens, W.H., Biodegradation, 1998, vol. 8, p. 401.

    Article  Google Scholar 

  23. Wang, C.B. and Zhang, W.X., Environ. Sci. Technol., 1997, vol. 31, p. 2154.

    Article  Google Scholar 

  24. Xu, J. and Bhattacharyya, D., Ind. Eng. Chem. Res., 2007, vol. 46, p. 2348.

    Article  Google Scholar 

  25. Xu, Y. and Zhang, W.X., Ind. Eng. Chem. Res., 2000, vol. 39, p. 2238.

    Article  Google Scholar 

  26. Elliott, D.W. and Zhang, W.X., Environ. Sci. Technol., 2001, vol. 35, no. 24, pp. 4922–4926.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ganesh-Kumar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ganesh-Kumar, S., Kalimuthu, K. & Jebakumar, S.R.D. Characterization of newly synthesized starch coated Fe/Cu nanoparticles and its dechlorination efficiency on the low and high chlorinated biphenyls. Prot Met Phys Chem Surf 53, 685–692 (2017). https://doi.org/10.1134/S2070205117040074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117040074

Navigation