Skip to main content
Log in

Regulation of sorption processes in natural nanoporous aluminosilicates. 3. Impact of electromagnetic fields on adsorption and desorption of formaldehyde by clinoptilolite

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The effect of electromagnetic fields on the adsorption–desorption properties of natural zeolites is a new direction in the theory of physical and chemical processes associated with the surface characteristics of aluminosilicates. The influence of two types of fields, an ultrahigh-frequency electromagnetic field (UHF EMF) and a weak pulsed magnetic field (WPMF) is considered. Modes for treatment of natural zeolite (clinoptilolite) and its activated forms for the most effective sorption of formaldehyde, water, and a mixture thereof were found. It was shown that the preadsorption activation of zeolite in a UHF EMF enhances the selectivity of water vapor sorption, whereas treatment of the sorbent in a WPMF largely affects the selectivity of the absorption of formaldehyde vapors. The decreased desorption of formaldehyde as a result of activation of the mineral in a UHF EMF, as well as complete absence of formaldehyde desorption when a WPMF was used as an activator, was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krivosheev, S.I., Shneerson, G.A., Platonov, V.V., et al, Tech. Phys., 2016, vol. 61, no. 1, p. 125.

    Article  Google Scholar 

  2. Electromagnetic Fields in Biological Systems, Lin, J.C., Ed., Boca Raton, FL: CRC Press, 2016.

  3. Zhelamskii, M.V., Elektromagnitnoe pozitsionirovanie podvizhnykh ob"ektov (Electromagnetic Positioning of Mobile Objects), Moscow: Fizmatlit, 2013.

    Google Scholar 

  4. Vlasov, V.A., Nauchn. J. Kuban. Gos. Agrar. Univ., 2012, no. 81, p. 1.

    Google Scholar 

  5. Margolin, V.I., Tupik, V.A., Fantikov, V.S., et al, Radiotekhnika (Moscow), 2012, no. 7, p. 127.

    Google Scholar 

  6. Kadoshnikov, V.M., Zabulonov, Yu.L., Litvinenko, Yu.V., et al, Mineral. Zh., 2010, vol. 32, no. 4, p. 50.

    Google Scholar 

  7. Sukharev, Yu.I., Krupnova, T.G., and Markus, M.V, Vestn. Yuzhno-Ural. Gos. Univ. Ser.: Mat., Mekh., Fiz., 2007, no. 3, p. 89.

    Google Scholar 

  8. Serov, I.N., Margolin, V.I., Zhabrev, V.A., et al, Inzh. Fiz., 2004, no. 1, p. 18.

    Google Scholar 

  9. Bingi, V.N. and Savin, A.V, Usp. Fiz. Nauk, 2003, vol. 173, no. 3, p. 265.

    Article  Google Scholar 

  10. Eveson, R.W., Timmel, C.R., Brocklehurst, B., et al, Int. J. Radiat. Biol., 2000, vol. 76, no. 11, p. 1509.

    Article  Google Scholar 

  11. Ivanitskii, G.R., Medvinskii, A.B., Deev, A.A., and Tsyganov, M.A, Usp. Fiz. Nauk, 1998, no. 168, p. 1221.

    Article  Google Scholar 

  12. Medvinskii, A.B., Petrovskii, S.V., Tikhonova, I.A., et al, Usp. Fiz. Nauk, 2002, no. 172, p. 31.

    Article  Google Scholar 

  13. Ivanitskii, G.R., Medvinskii, A.B., and Tsyganov, M.A, Usp. Fiz. Nauk, 1994, no. 164, p. 1041.

    Article  Google Scholar 

  14. Bel’chinskaya, L.I., Khodosova, N.A., Strel’nikova, O.Yu., et al, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 5, p. 779.

    Article  Google Scholar 

  15. Bel’chinskaya, L.I., Khokhlov, V.Yu., Lu, T.Y., et al, Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 3, p. 322.

    Article  Google Scholar 

  16. Kotova, D.L., Vasilyeva, S.Yu., Krysanova, T.A., et al, Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 4, p. 499.

    Article  Google Scholar 

  17. Bel’chinskaya, L.I., Strel’nikova, O.Yu., Novikova, L.A., et al, Prot. Met. Phys. Chem. Surf., 2008, vol. 44, no. 4, p. 390.

    Google Scholar 

  18. Bel’chinskaya, L.I., Khodosova, N.A., and Bityutskaya, L.A, Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 2, p. 203.

    Article  Google Scholar 

  19. Anisimov, M.V., Khodosova, N.A., and Bel’chinskaya, L.I, Voronezh. Nauchno-Tekh. Vestn., 2014, no. 1, p. 4.

    Google Scholar 

  20. Bel’chinskaya, L.I. and Anisimov, M.V, Nauchn. Vestn. Voronezh. Gos. Arkhit.-Stroit. Univ. Stroit. Arkhit., 2012, no. 1, p. 140.

    Google Scholar 

  21. Ting, W.R, Microwave Process. Mater., 1988, vol. 124, p. 3.

    Google Scholar 

  22. Bel’chinskaya, L.I., Tkacheva, O.A., Lavlinskaya, O.V., and Anisimov, M.V., Adsorbtsiya formal’degida aktivirovannymi napolnitelyami karbamidoformal’degidnykh smol (Formaldehyde Adsorption by means of Activated Fillers of Carbamide-Formaldehyde Resins), Voronezh: Voronezh State Academy of Forestry and Technologies Named after G.F. Morozov, 2014.

    Google Scholar 

  23. Tatur, T.A., Osnovy teorii elektromagnitnogo polya (Foundations of Electromagnetic Field Theory), Moscow: Vysshaya Shkola, 1989.

    Google Scholar 

  24. Johnson, D.L., Skamer, D.J., and Spotz, M.S, Ceram. Trans., 1993, vol. 36, p. 133.

    Google Scholar 

  25. Buchachenko, A.L., Sagdeev, R.Z., and Salikhov, K.M., Magnitnye i spinovye effekty v khimicheskikh reaktsiyakh (Magnetic and Spinning Effects in Chemical Reactions), Novosibirsk: Nauka, 1978.

    Google Scholar 

  26. Buchachenko, A.L, Usp. Khim., 2014, vol. 83, no. 1, p. 1.

    Article  Google Scholar 

  27. Bel’chinskaya, L.I., Varivodin, V.A., and Anisimov, M.V., RF Patent 2475300, 2013.

    Google Scholar 

  28. Bel’chinskaya, L.I., Bityutskaya, L.A., and Khodosova, N.A., RF Patent 2408422, 2011.

    Google Scholar 

  29. Khodosova, N.A., Cand. Sci. (Chem.) Dissertation, Voronezh, 2009.

    Google Scholar 

  30. Greg, S.J. and Sing, K.S.W., Adsorption, Surface Area and Porosity, London, New York: Academic Press, 1982.

    Google Scholar 

  31. Walker, J.F., Formaldehyde, New York: Reinhold Publ., 1964.

    Google Scholar 

  32. Kuznetsov, D.B, Sovrem. Probl. Nauki Obraz., 2013, no. 2, p. 441.

    Google Scholar 

  33. Bel’chinskaya, L.I., Khodosova, N.A., and Kozlov, A.T, Sorbtsionnye Khromatogr. Protsessy, 2008, vol. 8, no. 1, p. 147.

    Google Scholar 

  34. Myuller, R.F., Ol’shanskaya, V.P., and Rumyantsev, A., RF Patent 2438774, 2012.

    Google Scholar 

  35. Doronin, Yu.G. and Kondrat’ev, V.P, Derevoobrab. Prom-st., 1992, no. 5, p. 9.

    Google Scholar 

  36. Ovcharenko, V.P, Derevoobrab. Prom-st., 1999, no. 5, p. 10.

    Google Scholar 

  37. Mebel’, plity i fanera (Furniture, Wooden Plates, and Plywood), Moscow: All-Union Research and Design Institute on Economics, Production Management and Information for Forest, Pulp and Paper and Woodworking Industries, 1992, Issue 3, p. 40.

  38. Leonovich, A.A, Derevoobrab. Prom-st., 1999, no. 3, p. 30.

    Google Scholar 

  39. Kulikov, V.A., Chubov, A.B., Tekhnologiya kleenykh materialov i plit. Uchebnoe posobie (Technology of Glued Materials and Plates. Student’s Book), Moscow: Lesnaya Promyshlennost’, 1984.

    Google Scholar 

  40. Leonovich, A.A., Fiziko-khimicheskie osnovy obrazovaniya drevesnykh plit (Physical and Chemical Foundations of Wood Plates Formation), St. Petersburg: Khimizdat, 2003.

    Google Scholar 

  41. English, B., Stark, N., and Clemons, C., Proc. 4th Int. Conference on Wood-Plastic Composites, Madison, May 12–14, 1997, Madison, WI: Forest Product Society, 1997, p. 237.

    Google Scholar 

  42. Klesov, A., Drevesno-polimernye kompozity (Wood and Polymer Composites), St. Petersburg: Nauchnye Osnovy i Tekhnologii, 2010.

    Google Scholar 

  43. El’bert, A.A., Khimicheskaya tekhnologiya drevesnostruzhechnykh plit (Chemical Technology of Wood Particle Plates), Moscow: Lesnaya Promyshlennost’, 1984.

    Google Scholar 

  44. Dubinin, M.M. and Plachenov, T.G., Tseolity, ikh sintez, svoistva i primenenie (Zeolites: Synthesis, Properties, and Application), Moscow, Leningrad: Nauka, 1965.

    Google Scholar 

  45. Sing, K.S.W., Everett, D.H., Haul, R.A.W., et al, Pure Appl. Chem., 1985, vol. 57, no. 4, p. 603.

    Article  Google Scholar 

  46. Aripov, E.A., Abdullaev, N.F., and Gafurov, R.G., in Kislotnaya pererabotka alyuminiisoderzhashchego syr’ya na glinozem (Acidulation of Aluminium-Containing Raw Materials into Alumina), Tashkent: FAN, 1974, p. 69.

    Google Scholar 

  47. Tarasevich, Yu.I, Ross. Khim. Zh., 1995, vol. 39, no. 6, p. 52.

    Google Scholar 

  48. Bykov, S.V. and Ovcharenko, F.D., Prirodnye mineral’nye sorbenty (Natural Mineral Sorbents), Kiev: Acad. Sci. Ukr. SSR, 1960.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Bel’chinskaya.

Additional information

Original Russian Text © L.I. Bel’chinskaya, N.A. Khodosova, L.A. Novikova, M.V. Anisimov, G.A. Petukhova, 2017, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 5, pp. 472–479.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bel’chinskaya, L.I., Khodosova, N.A., Novikova, L.A. et al. Regulation of sorption processes in natural nanoporous aluminosilicates. 3. Impact of electromagnetic fields on adsorption and desorption of formaldehyde by clinoptilolite. Prot Met Phys Chem Surf 53, 793–800 (2017). https://doi.org/10.1134/S2070205117040025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117040025

Keywords

Navigation