Skip to main content
Log in

Kinetics of boron diffusion and characterization of Fe2B layers on AISI 9840 steel

  • New Substances, Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, the AISI 9840 steel was subjected to the powder-pack boriding in the temperature range of 1123–1273 K for various times ranging from 2 to 8 h. A kinetic model based on the principle of mass conservation at the growing interface was used to estimate the boron diffusion coefficients through the Fe2B layers. The pack-borided samples were experimentally characterized by different techniques such as: Scaning electron microscopy, XRD analysis, Microhardness Vickers testing. The Daimler-Benz Rockwell-C indentation technique was used to assess the adhesion quality of boride coatings on AISI 9840 steel. Finally, the scratch and pin-on-disc tests for wear resistance were respectively performed using an LG Motion Ltd and a CSM tribometer under dry sliding conditions. The boron activation energy for the AISI 9840 steel was estimated as 193.08 kJ /mol by applying the present model. To confirm and extend the validity of the diffusion model, the experimental values of Fe2B layers thicknesses obtained for other boriding conditions were compared with the predicted values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

v:

boride layer thickness, m

\({k_{F{e_2}B}}\) :

rate constant in the Fe2B phase, m/s1/2

t v :

effective growth time of the Fe2B layer, s

t :

treatment time, s

\(t_0^{F{e_2}B}\) :

boride incubation time, s

\(C_{up}^{F{e_2}B}\) :

represents the upper limit of boron content in Fe2B (= 60 × 103 mol/m3)

\(C_{low}^{F{e_2}B}\) :

lower limit of boron content in Fe2B (= 59.8 × 103 mol/m3)

C ads B :

adsorbed boron concentration in the boride layer, mol/m3

\({a_1} = C_{up}^{F{e_2}B} - C_{low}^{F{e_2}B}\) :

defines the homogeneity range of the Fe2B layer (mol/m3)

\({a_2} = C_{low}^{F{e_2}B} - {C_0}\) :

miscibility gap, mol/m3

C 0 :

terminal solubility of the interstitial solute (≈0 mol/m3)

\({C_{F{e_2}B}}\left[ {x\left( t \right)} \right]\) :

boron concentration profile in the Fe2B layer, mol/m3

ε:

normalized growth parameter for the (Fe2B/substrate) interface (it has no physical dimension)

\({D_{F{e_2}B}}\) :

represents the diffusion coefficient of boron in the Fe2B phase, m2/s

J i [x(t)], (with i = Fe2B and Fe):

fluxes of boron atoms in the (Fe2B/substrate) interface boundary (mol/m2 s)

References

  1. Sinha, A.K., J. Heat Treat., 1991, vol. 4, p. 437.

    Google Scholar 

  2. Bejar, M. and Moreno, E., J. Mater. Process. Technol., 2006, vol. 173, p. 352.

    Article  Google Scholar 

  3. Topuz, P., Gündoğdu, E., Yılmaz, E., and Gümüş, E., Mater. Test., 2014, vol. 9, p. 690.

    Article  Google Scholar 

  4. Jain, V. and Sundararajan, G., Surf. Coat. Technol., 2002, vol. 149, p. 21.

    Article  Google Scholar 

  5. Ulutan, M., Yildirim, M., Çelik, O., and Buytoz, S., Tribol. Lett., 2010, vol. 38, p. 231.

    Article  Google Scholar 

  6. Ozbek, I., Arabian J. Sci. Eng., 2014, vol. 39, p. 5185.

    Article  Google Scholar 

  7. Mathew, M. and Rajendrakumar, P., Mater. Manuf. Processes, 2014, vol. 29, p. 1073.

    Article  Google Scholar 

  8. Kulka, M., Makuch, N., and Popławski, M., Surf. Coat. Technol., 2014, vol. 244, p. 78.

    Article  Google Scholar 

  9. Karakas, M.S., Ucar, N., and Unuvar, F., Kovove Mater., 2014, vol. 52, p. 107.

    Google Scholar 

  10. Usta, M., Ozbek, I., Ipek, M., et al., Surf. Coat. Technol., 2005, vol. 194, p. 330.

    Article  Google Scholar 

  11. Kartal, G. and Timur, S., Surf. Coat. Technol., 2013, vol. 215, p. 440.

    Article  Google Scholar 

  12. Campos-Silva, I., Bravo-Bárcenas, D., et al., Surf. Coat. Technol., 2013, vol. 237, p. 402.

    Article  Google Scholar 

  13. Mu, D., Shen, B., and Zhao, X., Mater. Des., 2010, vol. 331, p. 3933.

    Article  Google Scholar 

  14. Elias-Espinosa, M., Ortiz-Domínguez, M., Keddam, M., et al., Surf. Eng., 2015, vol. 31, p. 588.

    Article  Google Scholar 

  15. Ortiz-Domínguez, M., Elias-Espinosa, M., Keddam, M., et al., Indian J. Eng. Mater. Sci., 2015, vol. 22, p. 231.

    Google Scholar 

  16. Keddam, M., Ortiz-Domínguez, M., Elias-Espinosa, M., et al., Trans. Indian Inst. Met., 2015, vol. 68, p. 433.

    Article  Google Scholar 

  17. Flores-Rentería, M., Ortiz-Domínguez, M., Keddam, M., et al., High Temp. Mater. Processes, 2015, vol. 31, p. 1.

    Article  Google Scholar 

  18. Zuno-Silva, J., Ortiz-Domínguez, M., Keddam, M., et al., J. Min. Metall., Sect. B, 2015, vol. 50, p. 101.

    Article  Google Scholar 

  19. Ortiz-Domínguez, M., Flores-Rentería, M., Keddam, M., et al., Mater. Tehnol., 2014, vol. 48, p. 905.

    Google Scholar 

  20. Elias-Espinosa, M., Ortiz-Domínguez, M., Keddam, M., et al., J. Mater. Eng. Perform., 2014, vol. 23, p. 2943.

    Article  Google Scholar 

  21. Ortiz-Domínguez, M., Keddam, M., Elias-Espinosa, M., et al., Surf. Eng., 2014, vol. 30, p. 490.

    Article  Google Scholar 

  22. Nait Abdellah, Z., Keddam, M., and Elias, A., Int. J. Mater. Res., 2013, vol. 104, p. 260.

    Article  Google Scholar 

  23. Nait Abdellah, Z., Keddam, M., Chegroune, R., et al., Mater. Tech., 2012, vol. 100, p. 581.

    Article  Google Scholar 

  24. Campos-Silva, I., Ortiz-Domínguez, M., Cimenoglu, H., et al., Surf. Eng., 2011, vol. 27, p. 189.

    Article  Google Scholar 

  25. Ortiz-Domínguez, M., Hernandez-Sanchez, E., Martínez-Trinidad, J., et al., Kovove Mater., 2010, vol. 48, p. 1.

    Google Scholar 

  26. Keddam, M. and Chegroune, R., Appl. Surf. Sci., 2010, vol. 256, p. 5025.

    Article  Google Scholar 

  27. Keddam, M., Ortiz-Domínguez, M., Campos-Silva, I., and Martínez-Trinidad, J., Appl. Surf. Sci., 2010, vol. 256, p. 3128.

    Article  Google Scholar 

  28. Brakman, C.M., Gommers, A.W.J., and Mittemeijer, E.J., J. Mater. Res., 1989, vol. 4, p. 1354.

    Article  Google Scholar 

  29. Yu, L.G., Chen, X.J., Khor, K.A., and Sundararajan, G., Acta Mater., 2005, vol. 53, p. 2361.

    Article  Google Scholar 

  30. Okamoto, H., J. Phase Equilib. Diffus., 2014, vol. 25, p. 297.

    Article  Google Scholar 

  31. Nait Abdellah, Z., Chegroune, R., Keddam, M., et al., Defect Diffus. Forum, 2012, vol. 322, p. 1.

    Article  Google Scholar 

  32. Dybkov, V.I., Reaction Diffusion and Solid State Chemical Kinetics, Zurich: Trans. Tech. Publ., 2010, p. 7.

    Google Scholar 

  33. Kunst, H. and Schaaber, O., HTM, Haerterei-Tech. Mitt., 1967, vol. 22, p. 275.

    Google Scholar 

  34. Verein Deutscher Ingenieure Normen VDI 3198, Dusseldorf: VDI-Verlag, 1991, p. 1.

  35. Vidakis, N., Antoniadis, A., and Bilalis, N., J. Mater. Process. Technol., 2003, vols. 143–144, p. 481.

    Article  Google Scholar 

  36. Taktak, S., Mater Des., 2007, vol. 28, p. 1836.

    Article  Google Scholar 

  37. Palombarini, G. and Carbucicchio, M., J. Mater. Sci. Lett., 1987, vol. 6, p. 415.

    Article  Google Scholar 

  38. Genel, K., Vacuum, 2006, vol. 80, p. 451.

    Article  Google Scholar 

  39. Kayali, Y. and Taktak, S., J. Adhes. Sci. Technol., 2015, vol. 29, p. 2065.

    Article  Google Scholar 

  40. Campos-Silva, I., Ortíz-Domínguez, M., et al., Defect Diffus. Forum, 2010, vol. 297, p. 1284.

    Article  Google Scholar 

  41. Lin, Z., Wang, Z., and Sun, X., Wear, 1990, vol. 138, p. 285.

    Article  Google Scholar 

  42. Galibois, A., Boutenko, O., and Voyzelle, B., Acta Metall., 1980, vol. 28, p. 1753.

    Article  Google Scholar 

  43. Campos-Silva, I., Ortíz-Domínguez, M., Tapia-Quintero, C., et al., J. Mater. Eng. Perform., 2012, vol. 21, p. 1714.

    Article  Google Scholar 

  44. Campos-Silva, I., Lopez-Perrusquia, N., Ortíz-Domínguez, M., et al., Kovove Mater., 2009, vol. 47, p. 75.

    Google Scholar 

  45. Genel, K., Ozbek, I., and Bindal, C., Mater. Sci. Eng., A, 2003, vol. 347, p. 311.

    Article  Google Scholar 

  46. Ucar, N., Aytar, O.B., and Calik, A., Mater. Technol., 2012, vol. 46, p. 621.

    Google Scholar 

  47. Petrova, R.S., Suwattananont, N., and Samardzic, V., J. Mater. Eng. Perform., 2006, vol. 17, p. 340.

    Article  Google Scholar 

  48. Selçuk, B., Ipek, R., and Karamis, M.B., J. Mater. Process. Technol., 2003, vol. 141, p. 189.

    Article  Google Scholar 

  49. Yan-Qiu Xia, Wei-Min Liu, Lai-Gui Yu, et al., Mater. Sci. Eng., A, 2003, vol. 354, p.17.

    Google Scholar 

  50. Venkataraman, B. and Sundararajan, G., Surf. Coat. Technol., 1995, vol. 73, p. 177.

    Article  Google Scholar 

  51. Garcia-Bustos, E., Figueroa-Guadarrama, M.A., Rodriguez-Castro, G.A., et al., Surf. Coat. Technol., 2013, vol. 215, p. 241.

    Article  Google Scholar 

  52. Lawn, B.R., J. Am. Ceram. Soc., 1998, vol. 81, p. 1977.

    Article  Google Scholar 

  53. Allaoui, O., Bouaouadja, N., and Saindernan, G., Surf. Coat. Technol., 2006, vol. 201, p. 3475.

    Article  Google Scholar 

  54. Kaouka, A., Allaoui, O., and Keddam, M., Mater. Tech., 2013, vol. 101, p. 705.

    Article  Google Scholar 

  55. Matiasovsky, K., Chrenkova-Paucirova, M., Fellner, P., and Makyta, M., Surf. Coat. Technol., 1998, vol. 35, p. 133.

    Article  Google Scholar 

  56. Kartal, G., Eryilmaz, O., Krumdick, G., et al., Appl. Surf. Sci., 2011, vol. 257, p. 6928.

    Article  Google Scholar 

  57. Gunes, I., Taktak, S., Bindal, C., et al., Sadhana, 2013, vol. 38, p. 513.

    Article  Google Scholar 

  58. Ipek, M., Celebi Efe, G., Ozbek, I., et al., J. Mater. Eng. Perform., 2012, vol. 21, p. 733.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Keddam.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortiz-Domínguez, M., Gómez-Vargas, O.A., Keddam, M. et al. Kinetics of boron diffusion and characterization of Fe2B layers on AISI 9840 steel. Prot Met Phys Chem Surf 53, 534–547 (2017). https://doi.org/10.1134/S2070205117030169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117030169

Navigation