Abstract
The inhibition performance of penicillin G(I), methicillin(II) and nafcillin(III) on the corrosion of aluminum in a 1 M HCl solution has been tested by weight loss, Tafel polarization, scanning electron microscopy (SEM), UV-vis spectrophotometry, molecular dynamics method and quantum chemical calculations. Polarization curves indicate that the studied (I), (III) and (II) act as mixed-type inhibitors. Experimental results show that the inhibition efficiencies follow the order: nafcillin > methicillin > penicillin G. The values of inhibition efficiency and surface coverage were found to follow the order: blank < (I) <(II) <(III). The maximum inhibition efficiency of 85.67% was exhibited by nafcillin, and the minimum inhibition efficiency of 42.07%was showed by penicillin. The adsorption of inhibitors obeys The Frumkin adsorption isotherm. The SEM micrographs confirm the protection of aluminum in a 1 M HCl solution by penicillin G, nafcillin, and methicillin. The shape of the UV/vis spectra of inhibitors in the presence of the immersion of Al showing a strong support to the possibility of the chemisorbed layer formation on Al surface by nafcillin (between nafcillin and aluminum) and physisorption between penicillin and methicillin with aluminum. The density functional theory (DFT) calculations were performed to provide further insight into the inhibition efficiencies that were determined experimentally. Molecular dynamics (MD) simulations were applied to find the most stable configuration and adsorption energies of penicillin G, nafcillin and methicillin molecules on the Al (110) surface. The interaction energy follows the order: (III)> (II)> (I). The results obtained from the experimental and theoretical approaches are in a reasonable agreement.
This is a preview of subscription content, access via your institution.
References
Díaz-Ballote, L., López-Sansores, J.F., Maldonado-López, L., and Garfias-Mesias, L.F., Electrochem. Commun., 2009, vol. 11, p. 41.
Alexopoulos, N.D., Dalakouras, C.J., Skarvelis, P., and Kourkoulis, S.K., Corros. Sci., 2012, vol. 55, p. 289.
Dan, Z., Takigawa, S., Muto, I., and Hara, N., Corros. Sci., 2011, vol. 53, p. 2006.
Gece, G., Corros. Sci., 2011, vol. 53, p. 3873.
Kovačević, N. and Kokalj, A., Mater. Chem. Phys., 2012, vol. 137, p. 331.
Kokalj, A. and Peljhan, S., Langmuir, 2010, vol. 26, p. 14582.
Kairi, N.I. and Kassim, J., Int. J. Electrochem. Sci., 2013, vol. 8, p. 7138.
Obot, I.B., Ebenso, E.E., and Kabanda, M.M., J. Environ. Chem. Eng., 2013, vol. 1, p. 431.
El Aal, E.A., El Wanees, S.A., Farouk, A., and El Haleem, S.A., Corros. Sci., 2013, vol. 68, p. 4.
Gopiraman, M., Sakunthala, P., Kesavan, D., et al., J. Coat. Technol. Res., 2012, vol. 9, p. 15.
Ayyannan, G., Karthikeyan, K., Vivekananthan, S.S., et al., Ionics, 2013, vol. 19, p. 919.
Noroozifar, M., Int. J. Nanosci. Nanotechnol., 2013, vol. 9, p. 85.
Liping, W., Junyan, Z., Zhixiang, Z., et al., Nanotecnology, 2006, vol. 17, p. 4614.
Ciubotariu, A.C., Benea, L., Lakatos-Varsanyi, M., and Dragan, V., Electrochim. Acta, 2008, vol. 53, p. 4557.
Gopiraman, M., Selvakumaran, N., Kesavan, D., and Karvembu, R., Prog. Org. Coat., 2012, vol. 73, p. 104.
Becke, A.D., Phys. Rev. A, 1988, vol. 38, p. 3098.
Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.
Lee, C., Yang, W., and Par, R., Phys. Rev. B, 1988, vol. 37, p. 785.
Frisch, M.J.T., Schlegel, H.B., Scuseria, G.E., et al., Gaussian 03, Revision C.02, Wallingford, CT: Gaussian, 2004.
Miertuš, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117.
Parr, R.G. and Yang, W., Density Functional Theory of Atoms and Molecules, Oxford: Oxford Univ. Press, 1989.
Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512.
Yadav, M., Kumar, S., Bahadur, I., and Ramjugernath, D., Int. J. Electrochem. Sci., 2014, vol. 9, p. 6529.
Pearson, R.G., Inorg. Chem., 1988, vol. 27, p. 734.
Khaled, K.F., Electrochim. Acta, 2010, vol. 55, p. 6523.
Kovačević, N. and Kokalj, A., J. Phys. Chem. C, 2011, vol. 115, p. 24189.
Yadav, M., Behera, D., Kumar, S., and Sinha, R., Ind. Eng. Chem. Res., 2013, vol. 52, p. 6318.
Obot, I.B., Macdonald, D.D., and Gasem, Z.M., Corros. Sci., 2015, vol. 99, p. 1.
Kokalj, A., Electrochim. Acta, 2010, vol. 56, p. 745.
Zhang, J.-M., Wang, D.-D., and Xu, K.-W., Appl. Surf. Sci., 2006, vol. 252, p. 8217.
Materials Studio 6.1 Manual, San Diego, CA: Accelrys, 2007.
Satoh, S., Fujimoto, H., and Kobayashi, H., J. Phys. Chem. B, 2006, vol. 110, p. 4846.
Golestani, G., Shahidi, M., and Ghazanfari, D., Appl. Surf. Sci., 2014, vol. 308, p. 347.
Ebenso, E., Ekpe, U., Ita, B., et al., Mater. Chem. Phys., 1999, vol. 60, p. 79.
Shabani-Nooshabadi, M., Ghoreishi, S., Jafari, Y., and Kashanizadeh, N., J. Polym. Res., 2014, vol. 21, p. 1.
Mobin, M., Parveen, M., and Rafiquee, M.Z.A., Arabian J. Chem., 2013. doi 10.1016/j.arabjc.2013.04.006
Foo, K.Y. and Hameed, B.H., Chem. Eng. J., 2010, vol. 156, p. 2.
Cang, H., Shi, W., Shao, J., and Xu, Q., Int. J. Electrochem. Sci., 2012, vol. 7, p. 5626.
Qiang, Y., Zhang, S., Xu, S., and Yin, L., RSC Adv., 2015, vol. 5, p. 63866.
Tian, H., Cheng, Y.F., Li, W., and Hou, B., Corros. Sci., 2015, vol. 100, p. 341.
Wang, D., Xiang, B., Liang, Y., et al., Corros. Sci., 2014, vol. 85, p. 77.
Wang, H., Wang, X., Wang, H., et al., J. Mol. Model., 2007, vol. 13, p. 147.
Sayed, E.T., Saito, Y., Tsujiguchi, T., and Nakagawa, N., J. Biosci. Bioeng., 2012, vol. 114, p. 521.
Saha, S.K., Ghosh, P., Hens, A., et al., Phys. E, 2015, vol. 66, p. 332.
Saha, S.K., Chowdhury, A.R., Lohar, A.K., et al., Can. Chem. Trans., 2014, vol. 2, p. 489.
Saha, S.K., Dutta, A., Ghosh, P., et al., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 5679.
Hohm, U., J. Phys. Chem. A, 2000, vol. 104, p. 8418.
Ebenso, E.E., Arslan, T., Kandemirli, F., et al., Int. J. Quantum Chem., 2010, vol. 110, p. 1003.
Arslan, T., Kandemirli, F., Ebenso, E., et al., Corros. Sci., 2009, vol. 51, p. 35.
Zeng, J., Zhang, J., and Gong, X., Comput. Theor. Chem., 2011, vol. 963, p. 110.
Author information
Authors and Affiliations
Corresponding author
Additional information
The article is published in the original.
Rights and permissions
About this article
Cite this article
Habibi-Khorassani, S.M., Shahraki, M., Noroozifar, M. et al. Inhibition of aluminum corrosion in acid solution by environmentally friendly antibacterial corrosion inhibitors: Experimental and theoretical investigations. Prot Met Phys Chem Surf 53, 579–590 (2017). https://doi.org/10.1134/S2070205117030078
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2070205117030078
Keywords
- corrosion
- metals
- green chemistry
- modelling
- spectroscopy