Skip to main content

Inhibition of aluminum corrosion in acid solution by environmentally friendly antibacterial corrosion inhibitors: Experimental and theoretical investigations

Abstract

The inhibition performance of penicillin G(I), methicillin(II) and nafcillin(III) on the corrosion of aluminum in a 1 M HCl solution has been tested by weight loss, Tafel polarization, scanning electron microscopy (SEM), UV-vis spectrophotometry, molecular dynamics method and quantum chemical calculations. Polarization curves indicate that the studied (I), (III) and (II) act as mixed-type inhibitors. Experimental results show that the inhibition efficiencies follow the order: nafcillin > methicillin > penicillin G. The values of inhibition efficiency and surface coverage were found to follow the order: blank < (I) <(II) <(III). The maximum inhibition efficiency of 85.67% was exhibited by nafcillin, and the minimum inhibition efficiency of 42.07%was showed by penicillin. The adsorption of inhibitors obeys The Frumkin adsorption isotherm. The SEM micrographs confirm the protection of aluminum in a 1 M HCl solution by penicillin G, nafcillin, and methicillin. The shape of the UV/vis spectra of inhibitors in the presence of the immersion of Al showing a strong support to the possibility of the chemisorbed layer formation on Al surface by nafcillin (between nafcillin and aluminum) and physisorption between penicillin and methicillin with aluminum. The density functional theory (DFT) calculations were performed to provide further insight into the inhibition efficiencies that were determined experimentally. Molecular dynamics (MD) simulations were applied to find the most stable configuration and adsorption energies of penicillin G, nafcillin and methicillin molecules on the Al (110) surface. The interaction energy follows the order: (III)> (II)> (I). The results obtained from the experimental and theoretical approaches are in a reasonable agreement.

This is a preview of subscription content, access via your institution.

References

  1. Díaz-Ballote, L., López-Sansores, J.F., Maldonado-López, L., and Garfias-Mesias, L.F., Electrochem. Commun., 2009, vol. 11, p. 41.

    Article  Google Scholar 

  2. Alexopoulos, N.D., Dalakouras, C.J., Skarvelis, P., and Kourkoulis, S.K., Corros. Sci., 2012, vol. 55, p. 289.

    Article  Google Scholar 

  3. Dan, Z., Takigawa, S., Muto, I., and Hara, N., Corros. Sci., 2011, vol. 53, p. 2006.

    Article  Google Scholar 

  4. Gece, G., Corros. Sci., 2011, vol. 53, p. 3873.

    Article  Google Scholar 

  5. Kovačević, N. and Kokalj, A., Mater. Chem. Phys., 2012, vol. 137, p. 331.

    Article  Google Scholar 

  6. Kokalj, A. and Peljhan, S., Langmuir, 2010, vol. 26, p. 14582.

    Article  Google Scholar 

  7. Kairi, N.I. and Kassim, J., Int. J. Electrochem. Sci., 2013, vol. 8, p. 7138.

    Google Scholar 

  8. Obot, I.B., Ebenso, E.E., and Kabanda, M.M., J. Environ. Chem. Eng., 2013, vol. 1, p. 431.

    Article  Google Scholar 

  9. El Aal, E.A., El Wanees, S.A., Farouk, A., and El Haleem, S.A., Corros. Sci., 2013, vol. 68, p. 4.

    Google Scholar 

  10. Gopiraman, M., Sakunthala, P., Kesavan, D., et al., J. Coat. Technol. Res., 2012, vol. 9, p. 15.

    Article  Google Scholar 

  11. Ayyannan, G., Karthikeyan, K., Vivekananthan, S.S., et al., Ionics, 2013, vol. 19, p. 919.

    Article  Google Scholar 

  12. Noroozifar, M., Int. J. Nanosci. Nanotechnol., 2013, vol. 9, p. 85.

    Google Scholar 

  13. Liping, W., Junyan, Z., Zhixiang, Z., et al., Nanotecnology, 2006, vol. 17, p. 4614.

    Article  Google Scholar 

  14. Ciubotariu, A.C., Benea, L., Lakatos-Varsanyi, M., and Dragan, V., Electrochim. Acta, 2008, vol. 53, p. 4557.

    Article  Google Scholar 

  15. Gopiraman, M., Selvakumaran, N., Kesavan, D., and Karvembu, R., Prog. Org. Coat., 2012, vol. 73, p. 104.

    Article  Google Scholar 

  16. Becke, A.D., Phys. Rev. A, 1988, vol. 38, p. 3098.

    Article  Google Scholar 

  17. Becke, A.D., J. Chem. Phys., 1993, vol. 98, p. 5648.

    Article  Google Scholar 

  18. Lee, C., Yang, W., and Par, R., Phys. Rev. B, 1988, vol. 37, p. 785.

    Article  Google Scholar 

  19. Frisch, M.J.T., Schlegel, H.B., Scuseria, G.E., et al., Gaussian 03, Revision C.02, Wallingford, CT: Gaussian, 2004.

    Google Scholar 

  20. Miertuš, S., Scrocco, E., and Tomasi, J., Chem. Phys., 1981, vol. 55, p. 117.

    Article  Google Scholar 

  21. Parr, R.G. and Yang, W., Density Functional Theory of Atoms and Molecules, Oxford: Oxford Univ. Press, 1989.

    Google Scholar 

  22. Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, p. 7512.

    Article  Google Scholar 

  23. Yadav, M., Kumar, S., Bahadur, I., and Ramjugernath, D., Int. J. Electrochem. Sci., 2014, vol. 9, p. 6529.

    Google Scholar 

  24. Pearson, R.G., Inorg. Chem., 1988, vol. 27, p. 734.

    Article  Google Scholar 

  25. Khaled, K.F., Electrochim. Acta, 2010, vol. 55, p. 6523.

    Article  Google Scholar 

  26. Kovačević, N. and Kokalj, A., J. Phys. Chem. C, 2011, vol. 115, p. 24189.

    Article  Google Scholar 

  27. Yadav, M., Behera, D., Kumar, S., and Sinha, R., Ind. Eng. Chem. Res., 2013, vol. 52, p. 6318.

    Article  Google Scholar 

  28. Obot, I.B., Macdonald, D.D., and Gasem, Z.M., Corros. Sci., 2015, vol. 99, p. 1.

    Article  Google Scholar 

  29. Kokalj, A., Electrochim. Acta, 2010, vol. 56, p. 745.

    Article  Google Scholar 

  30. Zhang, J.-M., Wang, D.-D., and Xu, K.-W., Appl. Surf. Sci., 2006, vol. 252, p. 8217.

    Article  Google Scholar 

  31. Materials Studio 6.1 Manual, San Diego, CA: Accelrys, 2007.

  32. Satoh, S., Fujimoto, H., and Kobayashi, H., J. Phys. Chem. B, 2006, vol. 110, p. 4846.

    Article  Google Scholar 

  33. Golestani, G., Shahidi, M., and Ghazanfari, D., Appl. Surf. Sci., 2014, vol. 308, p. 347.

    Article  Google Scholar 

  34. Ebenso, E., Ekpe, U., Ita, B., et al., Mater. Chem. Phys., 1999, vol. 60, p. 79.

    Article  Google Scholar 

  35. Shabani-Nooshabadi, M., Ghoreishi, S., Jafari, Y., and Kashanizadeh, N., J. Polym. Res., 2014, vol. 21, p. 1.

    Article  Google Scholar 

  36. Mobin, M., Parveen, M., and Rafiquee, M.Z.A., Arabian J. Chem., 2013. doi 10.1016/j.arabjc.2013.04.006

    Google Scholar 

  37. Foo, K.Y. and Hameed, B.H., Chem. Eng. J., 2010, vol. 156, p. 2.

    Article  Google Scholar 

  38. Cang, H., Shi, W., Shao, J., and Xu, Q., Int. J. Electrochem. Sci., 2012, vol. 7, p. 5626.

    Google Scholar 

  39. Qiang, Y., Zhang, S., Xu, S., and Yin, L., RSC Adv., 2015, vol. 5, p. 63866.

    Article  Google Scholar 

  40. Tian, H., Cheng, Y.F., Li, W., and Hou, B., Corros. Sci., 2015, vol. 100, p. 341.

    Article  Google Scholar 

  41. Wang, D., Xiang, B., Liang, Y., et al., Corros. Sci., 2014, vol. 85, p. 77.

    Article  Google Scholar 

  42. Wang, H., Wang, X., Wang, H., et al., J. Mol. Model., 2007, vol. 13, p. 147.

    Article  Google Scholar 

  43. Sayed, E.T., Saito, Y., Tsujiguchi, T., and Nakagawa, N., J. Biosci. Bioeng., 2012, vol. 114, p. 521.

    Article  Google Scholar 

  44. Saha, S.K., Ghosh, P., Hens, A., et al., Phys. E, 2015, vol. 66, p. 332.

    Article  Google Scholar 

  45. Saha, S.K., Chowdhury, A.R., Lohar, A.K., et al., Can. Chem. Trans., 2014, vol. 2, p. 489.

    Google Scholar 

  46. Saha, S.K., Dutta, A., Ghosh, P., et al., Phys. Chem. Chem. Phys., 2015, vol. 17, p. 5679.

    Article  Google Scholar 

  47. Hohm, U., J. Phys. Chem. A, 2000, vol. 104, p. 8418.

    Article  Google Scholar 

  48. Ebenso, E.E., Arslan, T., Kandemirli, F., et al., Int. J. Quantum Chem., 2010, vol. 110, p. 1003.

    Article  Google Scholar 

  49. Arslan, T., Kandemirli, F., Ebenso, E., et al., Corros. Sci., 2009, vol. 51, p. 35.

    Article  Google Scholar 

  50. Zeng, J., Zhang, J., and Gong, X., Comput. Theor. Chem., 2011, vol. 963, p. 110.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Shahraki.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habibi-Khorassani, S.M., Shahraki, M., Noroozifar, M. et al. Inhibition of aluminum corrosion in acid solution by environmentally friendly antibacterial corrosion inhibitors: Experimental and theoretical investigations. Prot Met Phys Chem Surf 53, 579–590 (2017). https://doi.org/10.1134/S2070205117030078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205117030078

Keywords

  • corrosion
  • metals
  • green chemistry
  • modelling
  • spectroscopy