Skip to main content

Comparative investigation of oxidation resistance and thermal stability of nanostructured Ti–B–N and Ti–Si–B–N coatings


Nanostructured Ti–B–N and Ti–Si–B–N coatings were deposited on silicon substrate by ion implantation assisted magnetron sputtering technique. To evaluate the oxidation resistance and thermal stability the coatings were annealed on air and in vacuum at 700–900°C. As-deposited and thermal-treated coatings were investigated by transmission electron microscope, selected area electron and x-ray diffraction, atomic force microscopy, Raman and glow discharge optical emission spectroscopy. Nanoindentaion tests were also performed. Obtained results show that Si alloying significantly improves the thermal stability of Ti–B–N coatings and increases their oxidation resistance up to 900°C. It was shown that formation of protective amorphous SiO2 top-layer on the coating surface plays important role in the increasing of the oxidation resistance.

This is a preview of subscription content, access via your institution.


  1. 1.

    Mitterer, C., Holler, F., Reitberger, D., et al., Surf. Coat. Technol., 2003, vols. 163–164, p. 716.

    Article  Google Scholar 

  2. 2.

    Zhang, C.H., Lu, X.C., Wang, H., et al., Appl. Surf. Sci., 2006, vol. 252, p. 6141.

    Article  Google Scholar 

  3. 3.

    Yamamoto, K., Kujime, S., and Takahara, K., Surf. Coat. Technol., 2005, vol. 200, p. 1383.

    Article  Google Scholar 

  4. 4.

    Kiryukhantsev-Korneev, F.V., et al., Russ. Eng. Res., 2010, vol. 30, p. 909.

    Article  Google Scholar 

  5. 5.

    Neidhardt, J., et al., Surf. Coat. Technol., 2006, vol. 201, p. 2553.

    Article  Google Scholar 

  6. 6.

    Karvankova, P., et al., Surf. Coat. Technol., 2003, vols. 163–164, p. 149.

    Article  Google Scholar 

  7. 7.

    Dreiling, I., et al., Surf. Coat. Technol., 2011, vol. 206, p. 479.

    Article  Google Scholar 

  8. 8.

    Kiryukhantsev-Korneev, Ph.V., Shtansky, D.V., Petrzhik, M.I., et al., Surf. Coat. Technol., 2007, vol. 201, p. 6143.

    Article  Google Scholar 

  9. 9.

    Huang, C.-T. and Duh, J.-G., Surf. Coat. Technol., 1996, vol. 81, p. 164.

    Article  Google Scholar 

  10. 10.

    Steyer, P., Pilloud, D., Pierson, J.F., et al., Surf. Coat. Technol., 2006, vol. 201, p. 4158.

    Article  Google Scholar 

  11. 11.

    Kiryukhantsev-Korneev, F.V., et al., Phys. Met. Metallogr., 2007, vol. 104, p. 167.

    Article  Google Scholar 

  12. 12.

    Joshi, A. and Hu, H.S., Surf. Coat. Technol., 1995, vols. 76–77, p. 499.

    Article  Google Scholar 

  13. 13.

    Inoue, S., Uchida, H., Yoshinaga, Y., and Koterazawa, K., Thin Solid Films, 1997, vol. 300, p. 171.

    Article  Google Scholar 

  14. 14.

    Fabrizi, A., Paternoster, C., Cecchini, R., et al., Mater. Sci. Forum, 2009, vols. 604–605, p. 19.

    Article  Google Scholar 

  15. 15.

    Vaz, F., Rebouta, L., Andritschky, M., et al., J. Eur. Ceram. Soc., 1997, vol. 17, p. 1971.

    Article  Google Scholar 

  16. 16.

    Pilloud, D., Pierson, J.F., Marco de Lucas, M.C., and Cavaleiro, A., Surf. Coat. Technol., 2008, vol. 202, p. 2413.

    Article  Google Scholar 

  17. 17.

    Paternoster, C., Fabrizi, A., Cecchini, R., et al., Surf. Coat. Technol., 2008, vol. 203, p. 736.

    Article  Google Scholar 

  18. 18.

    Levashov, E.A., et al., Russ. Metall. (Engl. Transl.), 2010, vol. 10, p. 917.

    Article  Google Scholar 

  19. 19.

    Kiryukhantsev-Korneev, Ph.V., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, p. 585.

    Article  Google Scholar 

  20. 20.

    Veprek, S., et al., Thin Solid Films, 2005, vol. 476, p. 1.

    Article  Google Scholar 

  21. 21.

    Dreiling, I., Raisch, Ch., Glaser, J., et al., Wear, 2012, vol. 288, p. 62.

    Article  Google Scholar 

  22. 22.,O/chemistry/asc/display=default/R040031.

  23. 23.

    Malinovsky, V.K., Novikov, V.N., Surovtsev, N.V., and Shebanin, P., Phys. Solid State, 2000, vol. 42, p. 65.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. Fabrizi.

Additional information

Published in Russian in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2017, Vol. 53, No. 3, pp. 290–297.

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fabrizi, A., Cecchini, R., Kiryukhantsev-Korneev, P.V. et al. Comparative investigation of oxidation resistance and thermal stability of nanostructured Ti–B–N and Ti–Si–B–N coatings. Prot Met Phys Chem Surf 53, 452–459 (2017).

Download citation


  • magnetron sputtering
  • nanostructured coatings
  • oxidation
  • microstructure
  • TEM
  • AFM