Skip to main content
Log in

Lithium–oxygen (air) batteries (state-of-the-art and perspectives)

  • Modern Problems of Physical Chemistry of Surfaces, Materials Science and Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Functional bases of power sources of Li–O2 type have been considered. Particular attention has been devoted to the Li–O2 system with liquid aprotic electrolyte as the most promising version of a rechargeable Li–O2 cell. The current status of research on the design of the principal components of Li–O2 battery represented by catalytically active and patterned materials, as well as binders for the formation of positive electrode, solvents and electrolytes, and separation membranes has been characterized. Insights into the mechanisms of the reactions that occur during discharge and recharge have been challenged and the factors that restrict cycling and discharge capacity of Li–O2 cell have been considered. Top-priority scientific and technological problems of the design of Li–O2 battery, which is competitive with respect to lithium-ion batteries, have been stated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armand, M. and Tarascon, J.-M., Nature, 2008, vol. 451, p. 652.

    Article  Google Scholar 

  2. Abraham, K.M. and Jiang, Z., J. Electrochem. Soc., 1996, vol. 143, p. 1.

    Article  Google Scholar 

  3. Ogasawara, T., Débart, A., Holzapfel, M., et al., J. Am. Chem. Soc., 2006, vol. 128, p. 1390.

    Article  Google Scholar 

  4. Shuster, N., US Patent 5427873, 1995.

    Google Scholar 

  5. Zheng, J.P., Liang, R.Y., Hendrickson, M., et al., J. Electrochem. Soc., 2008, vol. 155, p. A432.

    Article  Google Scholar 

  6. Littauer, E.L. and Tsai, K.C., J. Electrochem. Soc., 1977, vol. 124, p. 850.

    Article  Google Scholar 

  7. Lu, Y.-C., Gasteiger, H.A., Parent, M.C., et al., Electrochem. Solid-State Lett., 2010, vol. 13, p. A69.

    Article  Google Scholar 

  8. Chase, M.W., Jr., NIST-JANAF Thermochemical Tables, Washington, DC: American Chemical Society, 1998; J. Phys. Chem. Ref. Data, Monogr. 9, 1998.

    Google Scholar 

  9. Kraytsberg, A. and Ein-Eli, Y., J. Power Sources, 2011, vol. 196, p. 886.

    Article  Google Scholar 

  10. Cheng, F. and Chen, J., Chem. Soc. Rev., 2012, vol. 41, p. 2172.

    Article  Google Scholar 

  11. Girishkumar, G., McCloskey, B., Luntz, A.C., et al., J. Phys. Chem. Lett., 2010, vol. 1, p. 2193.

    Article  Google Scholar 

  12. Lee, J.-S., Kim, S.T., and Cao, R., Adv. Energy Mater., 2011, vol. 1, p. 34.

    Article  Google Scholar 

  13. Kowalczk, I., Read, J., and Salomon, M., Pure Appl. Chem., 2007, vol. 79, p. 851.

    Article  Google Scholar 

  14. Read, J., J. Electrochem. Soc., 2006, vol. 153, p. A96.

    Article  Google Scholar 

  15. Debart, A., Bao, J., Armstrong, G., et al., J. Power Sources, 2007, vol. 174, p. 1177.

    Article  Google Scholar 

  16. Visco, S.J., Katz, B.D., Nimon, Y.S., et al., US Patent 7282295, 2007.

    Google Scholar 

  17. Kumar, B., Kumar, J., Leese, R., et al., J. Electrochem. Soc., 2010, vol. 157, p. A50.

    Article  Google Scholar 

  18. Aurbach, D., J. Power Sources, 2000, vol. 89, p. 206.

    Article  Google Scholar 

  19. Xu, K., Chem. Rev., 2004, vol. 104, p. 4303.

    Article  Google Scholar 

  20. Visco, S.J., Nimon, E., Katz, B., et al., Proc. 12th Int. Meeting on Lithium Batteries, Nara, 2004, abstr. 53.

    Google Scholar 

  21. Imanishi, N., Hasegawa, S., Zhang, T., et al., J. Power Sources, 2008, vol. 185, p. 1392.

    Article  Google Scholar 

  22. Hasegawa, S., Imanishi, N., Zhang, T., et al., J. Power Sources, 2009, vol. 189, p. 371.

    Article  Google Scholar 

  23. Allen, J.L. and Wolfenstine, J., J. Mater. Sci., 2008, vol. 43, p. 7247.

    Article  Google Scholar 

  24. West, W.C., Whitacre, J.F., and Lim, J.R., J. Power Sources, 2007, vol. 126, p. 134.

    Article  Google Scholar 

  25. Zhang, T., Imanishi, N., Hasegawa, S., et al., J. Electrochem. Soc., 2008, vol. 155, p. A965.

    Article  Google Scholar 

  26. Zhang, T., Imanishi, N., Hirano, A., et al., Electrochem. Solid-State Lett., 2011, vol. 14, p. A45.

    Article  Google Scholar 

  27. Zhang, T., Imanishi, N., Hasegawa, S., et al., Electrochem. Solid-State Lett., 2009, vol. 12, p. A132.

    Article  Google Scholar 

  28. Shimonishi, Y., Zhang, T., Johnson, P., et al., J. Power Sources, 2010, vol. 195, p. 6187.

    Article  Google Scholar 

  29. Zhang, T., Imanishi, N., Shimonishi, Y., et al., Chem. Commun., 2010, vol. 46, p. 1661.

    Article  Google Scholar 

  30. Zhou, H., Wang, Y., Li, H., et al., ChemSusChem, 2010, vol. 3, p. 1009.

    Article  Google Scholar 

  31. Wang, Y. and Zhou, H., J. Power Sources, 2010, vol. 195, p. 358.

    Article  Google Scholar 

  32. Li, F., Kitaura, H., and Zhou, H., Energy Environ. Sci., 2013, vol. 6, p. 2302.

    Article  Google Scholar 

  33. Knauth, P., Solid State Ionics, 2009, vol. 180, p. 911.

    Article  Google Scholar 

  34. Armand, M., Solid State Ionics, 1994, vol. 69, p. 309.

    Article  Google Scholar 

  35. Hassoun, J., Croce, F., Armand, M., et al., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 2999.

    Article  Google Scholar 

  36. Aurbach, D., Weissman, I., Yamin, H., et al., J. Electrochem. Soc., 1998, vol. 145, p. 1421.

    Article  Google Scholar 

  37. Abraham, K.M., J. Power Sources, 1985, vol. 14, p. 179.

    Article  Google Scholar 

  38. Jang, C., Ida, S., Ishihara, T., et al., J. Electrochem. Soc., 2014, vol. 161, p. A821.

    Article  Google Scholar 

  39. Shiraishi, S., Kanamura, K., and Takehara, Z.-I., J. Appl. Electrochem., 1999, vol. 29, p. 867.

    Article  Google Scholar 

  40. Ota, H., Shima, K., Ue, M., et al., Electrochim. Acta, 2004, vol. 49, p. 565.

    Article  Google Scholar 

  41. Umeda, G.A., Menke, E., and Richard, M., J. Mater. Chem., 2011, vol. 21, p. 1593.

    Article  Google Scholar 

  42. Takehara, Z.-I., J. Power Sources, 1997, vol. 68, p. 82.

    Article  Google Scholar 

  43. Lee, Y.M., Choi, N.-S., Hwa Park, J., et al., J. Power Sources, 2003, vol. 119, p. 964.

    Article  Google Scholar 

  44. Liebenow, C. and Lühder, K., J. Appl. Electrochem., 1996, vol. 26, p. 689.

    Article  Google Scholar 

  45. Read, J., J. Electrochem. Soc., 2002, vol. 149, p. A1190.

    Article  Google Scholar 

  46. Read, J., Mutolo, K., Ervin, M., et al., J. Electrochem. Soc., 2003, vol. 150, p. A1351.

    Article  Google Scholar 

  47. Sandhu, S.S., Fellner, J.P., and Brutchen, G.W., J. Power Sources, 2003, vol. 164, p. 365.

    Article  Google Scholar 

  48. Veith, G.M., Nanda, J., Delmau, L.H., and Dudney, N.J., J. Phys. Chem. Lett., 2012, vol. 3, p. 1242.

    Article  Google Scholar 

  49. Xu, W., Xiao, J., Wang, D., et al., J. Electrochem. Soc., 2010, vol. 157, p. A219.

    Article  Google Scholar 

  50. Sahapatsombut, U., Cheng, H., and Scott, K., J. Power Sources, 2014, vol. 249, p. 418.

    Article  Google Scholar 

  51. Cho, M.H., Trottier, J., and Gagnon, C., J. Power Sources, 2014, vol. 268, p. 565.

    Article  Google Scholar 

  52. Black, R., Oh, S.H., Lee, J., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 2902.

    Article  Google Scholar 

  53. Tarasevich, M.R. and Korchagin, O.V., Russ. J. Electrochem., 2013, vol. 49, p. 600.

    Article  Google Scholar 

  54. Meini, S., Tsiouvaras, N., Schwenke, K.U., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 11478.

    Article  Google Scholar 

  55. Shao, Y., Park, S., Xiao, J., et al., ACS Catal., 2012, vol. 2, p. 844.

    Article  Google Scholar 

  56. Visco, S.J., Nimon, E., Katz, B., et al., Proc. Electrochemical Society Meeting, Cancun, 2006, abstr. 0389.

    Google Scholar 

  57. Wagner, F.T., Lakshmanan, B., and Mathias, M.F., J. Phys. Chem. Lett., 2010, vol. 1, p. 2204.

    Article  Google Scholar 

  58. Hardwick, L.J. and Bruce, P.G., Curr. Opin. Solid State Mater. Sci., 2012, vol. 16, p. 178.

    Article  Google Scholar 

  59. Nemanick, E.J., J. Power Sources, 2014, vol. 247, p. 26.

    Article  Google Scholar 

  60. Balaish, M., Kraytsberg, A., and Ein-Eli, Y., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 2801.

    Article  Google Scholar 

  61. Debart, A., Paterson, A.J., Bao, J., et al., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, p. 4521.

    Article  Google Scholar 

  62. Mizuno, F., Nakanishi, S., Shirasava, A., et al., Electrochemistry, 2011, vol. 79, p. 876.

    Article  Google Scholar 

  63. Freunberger, S.A., Chen, Y., Peng, Zh., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 8040.

    Article  Google Scholar 

  64. McCloskey, B.D., Scheffler, R., Speidel, A., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 18038.

    Article  Google Scholar 

  65. Xu, W., Xu, K., Viswanathan, V.V., et al., J. Power Sources, 2011, vol. 196, p. 9631.

    Article  Google Scholar 

  66. Veith, G.M., Dudney, N.J., Howe, J., et al., J. Phys. Chem. C, 2011, vol. 115, p. 14325.

    Article  Google Scholar 

  67. Herranz, J., Garsuch, A., and Gasteiger, H.A., J. Phys. Chem. C, 2012, vol. 116, p. 19084.

    Article  Google Scholar 

  68. Tsiouvaras, N., Meini, S., Buchberger, I., et al., J. Electrochem. Soc., 2013, vol. 160, p. A471.

    Article  Google Scholar 

  69. Bryantsev, V.S., Giordani, V., Walker, W., et al., J. Phys. Chem. A, 2011, vol. 115, p. 12399.

    Article  Google Scholar 

  70. Zhang, Z.C., Lu, J., Assary, R.S., et al., J. Phys. Chem. C, 2011, vol. 115, p. 25535.

    Article  Google Scholar 

  71. Du, P., Lu, J., Lau, K.C., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 5572.

    Article  Google Scholar 

  72. McCloskey, B.D., Bethune, D.S., Shelby, R.M., et al., J. Phys. Chem. Lett., 2011, vol. 2, p. 1161.

    Article  Google Scholar 

  73. Aurbach, D., Daroux, M., Faguy, P., et al., J. Electroanal. Chem., 1991, vol. 297, p. 225.

    Article  Google Scholar 

  74. Freunberger, S.A., Chen, Y., Drewett, N.E., et al., Angew. Chem., Int. Ed., 2011, vol. 50, p. 8609.

    Article  Google Scholar 

  75. Schwenke, K.U., Meini, S., Wu, X., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 11830.

    Article  Google Scholar 

  76. Bryantsev, V.S., Uddin, J., Giordani, V., et al., J. Electrochem. Soc., 2013, vol. 160, p. A160.

    Article  Google Scholar 

  77. Chen, Y., Freunberger, S.A., Peng, Z., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 7952.

    Article  Google Scholar 

  78. Walker, W., Giordani, V., Uddin, J., et al., J. Am. Chem. Soc., 2013, vol. 135, p. 2076.

    Article  Google Scholar 

  79. Peng, Z., Freunberger, S.A., Chen, Y., et al., Science, 2012, vol. 337, p. 563.

    Article  Google Scholar 

  80. Takechi, K., Higashi, S., Mizuno, F., et al., ECS Electrochem. Lett., 2012, vol. 1, p. A27.

    Article  Google Scholar 

  81. Trahan, M.J., Mukerjee, S., Plichta, E.J., et al., J. Electrochem. Soc., 2013, vol. 160, p. A259.

    Article  Google Scholar 

  82. Morita, M., Tachihara, F., and Matsuda, Y., Electrochim. Acta, 1987, vol. 32, p. 299.

    Article  Google Scholar 

  83. Sirenko, V.I., Potapenko, A.V., and Prisiazshnyi, V.D., J. Power Sources, 2008, vol. 175, p. 581.

    Article  Google Scholar 

  84. Xu, D., Wang, Z.-I., Xu, J.-J., et al., Chem. Commun., 2012, vol. 48, p. 11674.

    Article  Google Scholar 

  85. Fulem, M., Růžička, K., and Růžička, M., Fluid Phase Equilib., 2011, vol. 303, p. 205.

    Article  Google Scholar 

  86. Sun, X. and Angell, C.A., Electrochem. Commun., 2005, vol. 7, p. 261.

    Article  Google Scholar 

  87. Kuboki, T., Okuyama, T., Ohsaki, T., et al., J. Power Sources, 2005, vol. 146, p. 766.

    Article  Google Scholar 

  88. Rosol, Z.P., German, N.J., and Gross, S.M., Green Chem., 2009, vol. 11, p. 1453.

    Article  Google Scholar 

  89. Zhang, D., Li, R., Huang, T., et al., J. Power Sources, 2010, vol. 195, p. 1202.

    Article  Google Scholar 

  90. AlNashef, I.M., Leonard, M.L., and Kittle, M.C., Electrochem. Solid-State Lett., 2001, vol. 4, p. D16.

    Article  Google Scholar 

  91. Zhang, D., Okajima, T., Matsumoto, F., et al., J. Electrochem. Soc., 2004, vol. 151, p. D31.

    Article  Google Scholar 

  92. Katayama, Y., Sekiguchi, K., Yamagata, M., et al., J. Electrochem. Soc., 2005, vol. 152, p. E247.

    Google Scholar 

  93. Allen, C.J., Hwang, J., Kautz, R., et al., J. Phys. Chem. C, 2012, vol. 116, p. 20755.

    Article  Google Scholar 

  94. Allen, C.J., Mukerjee, S., Plichta, E.J., et al., J. Phys. Chem. Lett., 2011, vol. 2, p. 2420.

    Article  Google Scholar 

  95. Pearson, R.G., J. Am. Chem. Soc., 1963, vol. 85, p. 3533.

    Article  Google Scholar 

  96. Nakamoto, H., Suzuki, Y., Shiotsuki, T., et al., J. Power Sources, 2013, vol. 243, p. 19.

    Article  Google Scholar 

  97. Hayyan, M., Mjalli, F.S., Ali Hashim, M., et al., J. Mol. Liq., 2013, vol. 181, p. 44.

    Article  Google Scholar 

  98. Cui, Z.H., Fan, W.G., and Guo, X.X., J. Power Sources, 2013, vol. 235, p. 251.

    Article  Google Scholar 

  99. Soavi, F., Monaco, S., and Mastragostino, M., J. Power Sources, 2013, vol. 224, p. 115.

    Article  Google Scholar 

  100. Basile, A., Hollenkamp, A.F., Bhatt, A.I., et al., Electrochem. Commun., 2013, vol. 27, p. 69.

    Article  Google Scholar 

  101. Sakaebe, H. and Matsumoto, H., Electrochem. Commun., 2003, vol. 5, p. 594.

    Article  Google Scholar 

  102. Garcia, B., Lavallée, S., Perron, G., et al., Electrochim. Acta, 2004, vol. 49, p. 4583.

    Article  Google Scholar 

  103. Shen, Y., Sun, D., Yu, L., et al., Carbon, 2013, vol. 62, p. 288.

    Article  Google Scholar 

  104. Zhang, T. and Zhou, H., Angew. Chem., Int. Ed., 2012, vol. 51, p. 11062.

    Article  Google Scholar 

  105. Zygadło-Monikowska, E., Florjańczyk, Z., Kubisa, P., et al., Int. J. Hydrogen Energy, 2014, vol. 39, p. 2943.

    Article  Google Scholar 

  106. McCloskey, B.D., Bethune, D.S., Shelby, R.M., et al., J. Phys. Chem. Lett., 2012, vol. 3, p. 3043.

    Article  Google Scholar 

  107. Oswald, S., Mikhailova, D., Scheiba, F., et al., Anal. Bioanal. Chem., 2011, vol. 400, p. 691.

    Article  Google Scholar 

  108. Oh, S.H., Yim, T., Pomerantseva, E., et al., Electrochem. Solid-State Lett., 2011, vol. 14, p. A185.

    Article  Google Scholar 

  109. Xie, B., Lee, H.S., Li, H., et al., Electrochem. Commun., 2008, vol. 10, p. 1195.

    Article  Google Scholar 

  110. Shanmukaraj, D., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 3055.

    Article  Google Scholar 

  111. Laoire, C.O., Mukerjee, S., Abraham, K.M., et al., J. Phys. Chem. C, 2009, vol. 113, p. 20127.

    Article  Google Scholar 

  112. Wang, Y.F., Zheng, D., Yang, X.Q., et al., Energy Environ. Sci., 2011, vol. 4, p. 3697.

    Article  Google Scholar 

  113. Choi, N., Jeong, G., Koo, B., et al., J. Power Sources, 2013, vol. 225, p. 95.

    Article  Google Scholar 

  114. Reddy, V.P., Blanco, M., and Bugga, R., J. Power Sources, 2014, vol. 247, p. 813.

    Article  Google Scholar 

  115. Nair, N.G., Mendoza-Cortes, J.L., Abrol, R., et al., J. Organomet. Chem., 2013, vol. 747, p. 133.

    Article  Google Scholar 

  116. Lu, Y.-C., Xu, Z., Gasteiger, H.A., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 12170.

    Article  Google Scholar 

  117. Nasybulin, E., Xu, W., Engelhard, M.H., et al., J. Power Sources, 2013, vol. 243, p. 899.

    Article  Google Scholar 

  118. Maricle, D.L. and Hodgson, W.G., Anal. Chem., 1965, vol. 37, p. 1562.

    Article  Google Scholar 

  119. Sawyer, D.T., Chiericato, G., Jr., Angelis, C.T., et al., Anal. Chem., 1982, vol. 54, p. 1720.

    Article  Google Scholar 

  120. Tarasevich, M.R., Sadkowski, A., and Yeager, E., in Comprehensive Treatise of Electrochemistry, vol. 7: Kinetics and Mechanism of Electrode Processes, Conway, B.E., Bockris, J.O'M., Yeager, E., et al., Eds., New York, London: Plenum Press, 1983, p. 301.

  121. Adzic, R., in Electrocatalysis, vol. 5: Frontiers in Electrochemistry, Lipkowski, J. and Ross, P.N., Eds., New York: Wiley-VCH, 1998, p. 197.

  122. Lu, Y.C., Gasteiger, H.A., Crumlin, E., et al., J. Electrochem. Soc., 2010, vol. 157, p. A1016.

    Article  Google Scholar 

  123. Sawada, Y., Iyanagi, T., and Yamazaki, I., Biochemistry, 1975, vol. 14, p. 3761.

    Article  Google Scholar 

  124. Peng, Z.Q., Freunberger, S.A., and Hardwick, L.J., Angew. Chem., Int. Ed. Engl., 2011, vol. 50, p. 6351.

    Article  Google Scholar 

  125. Chen, J.Z., Hummelshoj, J.S., Thygesen, K.S., et al., Catal. Today, 2011, vol. 165, p. 2.

    Article  Google Scholar 

  126. Meini, S., Piana, M., Tsiouvaras, N., et al., Electrochem. Solid-State Lett., 2012, vol. 15, p. A45.

    Article  Google Scholar 

  127. Albertus, P., Girishkumar, G., McCloskey, B., et al., J. Electrochem. Soc., 2011, vol. 158, p. A343.

    Article  Google Scholar 

  128. Viswanathan, V., Thygesen, K.S., Hummelshoj, J.S., et al., J. Chem. Phys., 2011, vol. 135, p. 214704.

    Article  Google Scholar 

  129. McCloskey, B.D., Bethune, D.S., Shelby, R.M., et al., J. Phys. Chem. Lett., 2011, vol. 2, p. 1161.

    Article  Google Scholar 

  130. Hummelshoj, J.S., Luntz, A.C., and Norskov, J.K., J. Chem. Phys., 2013, vol. 138, no. 3, p. 034703.

    Article  Google Scholar 

  131. Hummelshoj, J.S., Blomqvist, J., and Datta, S., J. Chem. Phys., 2010, vol. 132, p. 071101.

    Article  Google Scholar 

  132. Viswanathan, V., Norskov, J.K., Speidel, A., et al., J. Phys. Chem. Lett., 2013, vol. 4, p. 556.

    Article  Google Scholar 

  133. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1981.

    Google Scholar 

  134. Kinoshita, K., Carbon: Electrochemical and Physicochemical Properties, New York: John Wiley & Sons, 1988.

    Google Scholar 

  135. Cindrella, L., Kannan, A.M., Lin, J.F., et al., J. Power Sources, 2009, vol. 194, p. 146.

    Article  Google Scholar 

  136. Mirzaeian, M. and Hall, P.J., J. Power Sources, 2010, vol. 195, p. 6817.

    Article  Google Scholar 

  137. Tran, C., Kafle, J., Yang, X.Q., et al., Carbon, 2011, vol. 49, p. 1266.

    Article  Google Scholar 

  138. Wang, J., Li, Y., and Sun, X., Nano Energy, 2013, vol. 2, p. 443.

    Article  Google Scholar 

  139. Tran, C. and Yang, X.-Q., J. Power Sources, 2010, vol. 195, p. 2057.

    Article  Google Scholar 

  140. Xiao, J., Wang, D., Xu, W., et al., J. Electrochem. Soc., 2010, vol. 157, p. A487.

    Article  Google Scholar 

  141. Kang, J., Li, O.L., and Saito, N., J. Power Sources, 2014, vol. 261, p. 156.

    Article  Google Scholar 

  142. Xiao, J., Mei, D.H., Li, X.L., et al., Nano Lett., 2011, vol. 11, p. 5071.

    Article  Google Scholar 

  143. Li, Y., Wang, J., Li, X., et al., Chem. Commun., 2011, vol. 47, p. 9438.

    Article  Google Scholar 

  144. Kichambare, P., Kumar, J., Rodrigues, S., et al., J. Power Sources, 2011, vol. 196, p. 3310.

    Article  Google Scholar 

  145. Li, Y.L., Wang, J.J., Li, X.F., et al., Electrochem. Commun., 2011, vol. 13, p. 668.

    Article  Google Scholar 

  146. Zhang, Sh.S., Ren, X., and Read, J., Electrochim. Acta, 2011, vol. 56, p. 4544.

    Article  Google Scholar 

  147. Meini, St., Piana, M., Beyer, H., et al., J. Electrochem. Soc., 2012, vol. 159, p. A2135.

    Article  Google Scholar 

  148. Itkis, D.M., Semenenko, D.A., Kataev, E.Yu., et al., Nano Lett., 2013, vol. 13, p. 4697.

    Article  Google Scholar 

  149. Gallant, B.M., Mitchell, R.R., Kwabi, D.G., et al., J. Phys. Chem. C, 2012, vol. 116, p. 20800.

    Article  Google Scholar 

  150. Beyer, H., Meini, S., Tsiouvaras, N., et al., Phys. Chem. Chem. Phys., 2013, vol. 15, p. 11025.

    Article  Google Scholar 

  151. Ottakam Thotiyl, M.M., Freunberger, S.A., Peng, Zh., et al., J. Am. Chem. Soc., 2013, vol. 135, p. 494.

    Article  Google Scholar 

  152. Giordani, V., Freunberger, S.A., and Bruce, P.G., Electrochem. Solid-State Lett., 2010, vol. 13, p. A180.

    Article  Google Scholar 

  153. Kavakli, C., Meini, S., Harzer, G., et al., Chem-CatChem, 2013, vol. 5, p. 3358.

    Google Scholar 

  154. Cheng, H. and Scott, K., J. Power Sources, 2010, vol. 195, p. 1370.

    Article  Google Scholar 

  155. Zhang, D., Fu, Zh., Wei, Zh., et al., J. Electrochem. Soc., 2010, vol. 157, p. A362.

    Article  Google Scholar 

  156. Park, H.W., Lee, D.U., and Nazar, L.F., J. Electrochem. Soc., 2013, vol. 160, p. A344.

    Article  Google Scholar 

  157. Cui, Z.H. and Guo, X.X., J. Power Sources, 2014, vol. 267, p. 20.

    Article  Google Scholar 

  158. Kalubarme, R.S., Park, G.-E., Jung, K.-N., et al., J. Electrochem. Soc., 2014, vol. 161, p. A880.

    Article  Google Scholar 

  159. Ren, X., Zhang, S.S., Tran, D.T., et al., J. Mater. Chem., 2011, vol. 21, p. 10118.

    Article  Google Scholar 

  160. Du, Zh., Yang, P., Wang, L., et al., J. Power Sources, 2014, vol. 265, p. 91.

    Article  Google Scholar 

  161. Zhao, G., Xu, Zh., and Sun, K., J. Mater. Chem. A, 2013, vol. 1, p. 12862.

    Article  Google Scholar 

  162. Thapa, A.K. and Ishihara, T., J. Power Sources, 2011, vol. 196, p. 7016.

    Article  Google Scholar 

  163. Lu, Y.-Ch., Gasteiger, H.A., and Shao-Horn, Y., J. Am. Chem. Soc., 2011, vol. 133, p. 19048.

    Article  Google Scholar 

  164. Lu, Y.-Ch., Gasteiger, H.A., and Shao-Horn, Y., Electrochem. Solid-State Lett., 2011, vol. 14, p. A70.

    Article  Google Scholar 

  165. Lu, Y.-Ch., Kwabi, D.G., Yao, K.P.C., et al., Energy Environ. Sci., 2011, vol. 4, p. 2999.

    Article  Google Scholar 

  166. Laoire, C., Mukerjee, S., Plichta, E.J., et al., J. Electrochem. Soc., 2011, vol. 158, p. A302.

    Article  Google Scholar 

  167. Assary, R.S., Lu, J., Du, P., et al., ChemSusChem, 2013, vol. 6, p. 51.

    Article  Google Scholar 

  168. Barton, J.L. and Bockris, J.O’M., Proc. R. Soc. London, Ser. A, 1962, vol. 268, p. 485.

    Article  Google Scholar 

  169. Monroe, C. and Newman, J., J. Electrochem. Soc., 2003, vol. 150, p. A1377.

    Article  Google Scholar 

  170. Yamaki, J., Tobishima, S., Hayashi, K., et al., J. Power Sources, 1998, vol. 74, p. 219.

    Article  Google Scholar 

  171. Steiger, J., Kramer, D., and Mönig, R., J. Power Sources, 2014, vol. 261, p. 112.

    Article  Google Scholar 

  172. Goodman, J.K.S. and Kohl, P.A., J. Electrochem. Soc., 2014, vol. 161, p. D418.

    Article  Google Scholar 

  173. Truong, T.T., Qin, Y., Ren, Y., et al., Adv. Mater., 2011, vol. 23, p. 4947.

    Article  Google Scholar 

  174. Ota, H., Sakata, Y., Otake, Y., et al., J. Electrochem. Soc., 2004, vol. 151, p. A1778.

    Article  Google Scholar 

  175. Sano, H., Sakaebe, H., and Matsumoto, H., J. Electrochem. Soc., 2011, vol. 158, p. A316.

    Article  Google Scholar 

  176. Wang, X.J., Lee, H.S., Li, H., et al., Electrochem. Commun., 2010, vol. 12, p. 386.

    Article  Google Scholar 

  177. Ota, H., Wang, X., and Yasukawa, E., J. Electrochem. Soc., 2004, vol. 151, p. A427.

    Article  Google Scholar 

  178. Kanamura, K., Shiraishi, S., and Takehara, Z., J. Electrochem. Soc., 1996, vol. 143, p. 2187.

    Article  Google Scholar 

  179. Stark, J.K., Ding, Y., and Kohl, P.A., J. Electrochem. Soc., 2013, vol. 160, p. D337.

    Article  Google Scholar 

  180. Lu, J. and Amine, K., Energies, 2013, vol. 6, p. 6016.

    Article  Google Scholar 

  181. Sun, Y., Nano Energy, 2013, vol. 2, p. 801.

    Article  Google Scholar 

  182. Chizmadzhev, Yu.A., Markin, V.S., Tarasevich, M.R., and Chirkov, Yu.G., Makrokinetika protsessov v poristykh sredakh (Macrokinetic of Processes Taking Place in Porous Media), Moscow: Nauka, 1971.

    Google Scholar 

  183. Gurevich, I.G., Vol’fkovich, Yu.M., and Bagotskii, V.S., Zhidkostnye poristye elektrody (Fluid Porous Electrodes), Minsk: Nauka i Tekhnika, 1974.

    Google Scholar 

  184. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN) 1615-6854/issues.

  185. Sahapatsombut, U., Cheng, H., and Scott, K., J. Power Sources, 2013, vol. 227, p. 243.

    Article  Google Scholar 

  186. Yoo, K., Banerjee, S., and Dutta, P., J. Power Sources, 2014, vol. 258, p. 340.

    Article  Google Scholar 

  187. Adams, J., Karulkar, M., and Anandan, V., J. Power Sources, 2013, vol. 239, p. 132.

    Article  Google Scholar 

  188. Mitchell, R.R., Gallant, B.M., Thompson, C.V., et al., Energy Environ. Sci., 2011, vol. 4, p. 2952.

    Article  Google Scholar 

  189. Fuentes, R.E., Colón-Mercado, H.R., and Fox, E.B., J. Power Sources, 2014, vol. 255, p. 219.

    Article  Google Scholar 

  190. Harding, J.R., Lu, Y.-C., Tsukada, Y., et al., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 10540.

    Article  Google Scholar 

  191. Black, R., Lee, J., and Adams, B., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 392.

    Article  Google Scholar 

  192. Oh, S.H. and Nazar, L.F., Adv. Energy Mater., 2012, vol. 2, p. 903.

    Article  Google Scholar 

  193. Shui, J., Karan, N.K., Balasubramanian, M., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 16654.

    Article  Google Scholar 

  194. Yilmaz, E., Yogi, C., Yamanaka, K., et al., Nano Lett., 2013, vol. 13, p. 4679.

    Article  Google Scholar 

  195. Lu, Y.-C. and Shao-Horn, Y., J. Phys. Chem. Lett., 2013, vol. 4, p. 93.

    Article  Google Scholar 

  196. Radin, M.D., Rodriguez, J.F., Tian, F., et al., J. Am. Chem. Soc., 2012, vol. 134, p. 1093.

    Article  Google Scholar 

  197. Jung, H., Hassoun, J., Park, J., et al., Nat. Chem., 2012, vol. 4, p. 579.

    Article  Google Scholar 

  198. Jung, H., Kim, H., Park, J., et al., Nano Lett., 2012, vol. 12, p. 4333.

    Article  Google Scholar 

  199. McCloskey, B.D., Speidel, A., Scheffler, R., et al., J. Phys. Chem. Lett., 2012, vol. 3, p. 997.

    Article  Google Scholar 

  200. Li, F., Zhang, T., Yamada, Y., et al., Adv. Energy Mater., 2013, vol. 3, p. 532.

    Article  Google Scholar 

  201. Han, S.-M., Kim, J.-H., and Kim, D.-W., J. Electrochem. Soc., 2014, vol. 161, p. A856.

    Article  Google Scholar 

  202. Nemanick, E.J. and Hickey, R.P., J. Power Sources, 2014, vol. 252, p. 248.

    Article  Google Scholar 

  203. Lim, H., Park, K.-Y., Song, H., et al., Adv. Mater., 2013, vol. 25, p. 1348.

    Article  Google Scholar 

  204. Xu, J.-J., Xu, D., Wang, Z.-L., et al., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, p. 3887.

    Article  Google Scholar 

  205. Riaz, A., Jung, K.-N., Chang, W., et al., Chem. Commun., 2013, vol. 49, p. 5984.

    Article  Google Scholar 

  206. Sun, B., Munroe, P., and Wang, G., Sci. Rep., 2013, vol. 3, p. 2247.

    Google Scholar 

  207. Jung, H.-G., Jeong, Y.S., Park, J.-B., et al., ACS Nano, 2013, vol. 7, p. 3532.

    Article  Google Scholar 

  208. Zhao, G., Niu, Y., Zhang, L., et al., J. Power Sources, 2014, vol. 270, p. 386.

    Article  Google Scholar 

  209. Jian, Z., Liu, P., Li, F., et al., Angew. Chem., Int. Ed., 2014, vol. 53, p. 442.

    Article  Google Scholar 

  210. Lim, H.-D., Park, K.-Y., Gwon, H., et al., Chem. Commun., 2012, vol. 48, p. 8374.

    Article  Google Scholar 

  211. Zhou, J.G., Fang, H.T., Hu, Y.F., et al., J. Phys. Chem. C, 2009, vol. 113, p. 10747.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Korchagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasevich, M.R., Andreev, V.N., Korchagin, O.V. et al. Lithium–oxygen (air) batteries (state-of-the-art and perspectives). Prot Met Phys Chem Surf 53, 1–48 (2017). https://doi.org/10.1134/S207020511701018X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S207020511701018X

Keywords

Navigation