Skip to main content
Log in

Features of the thermal behavior of PMMA/C60 film composites

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Polymethylmethacrylate-based film composites containing small additives of fullerenes (up to 3 wt %) are obtained. The thermal behavior of the obtained materials is studied by DSC in the temperature range from 25 to 130°C. It is found that the character of the DSC curve depends on the composite composition. For films containing up to 0.1 wt % C60, one glass transition temperature (T g soft) is observed, while in the case of films with a higher concentration of the filler, two glass transition temperatures (T g soft and T g solid) are observed. It is found that the dependence of T g soft value on the content of fullerenes is nonmonotonic with a minimum at 0.5 wt % of C60.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badamshina, E.R. and Gafurova, M.P., Polym. Sci., Ser. B, 2008, vol. 50, nos. 7–8, pp. 215–226.

    Article  Google Scholar 

  2. Alekseeva, O.V., Bagrovskaya, N.A., Kuz’min, S.M., et al., Russ. J. Phys. Chem. A, 2009, vol. 83, no. 7, pp. 1170–1175.

    Article  Google Scholar 

  3. Alekseeva, O.V., Barannikov, V.P., Bagrovskaya, N.A., et al., J. Therm. Anal. Calorim., 2012, vol. 109, p. 1033.

    Article  Google Scholar 

  4. Arshad, M., Masud, K., Arif, M., et al., J. Therm. Anal. Calorim., 2009, vol. 96, p. 873.

    Article  Google Scholar 

  5. Harper, C.A., Modern Plastics Handbook, New York: McGraw-Hill, 2000.

    Google Scholar 

  6. Nemec, J.W., Jr. and Bauer, W., in Encyclopedia of Polymer Science and Engineering, Mark, H.F., Bikales, N.M., Overberger, C.G., and Marges, G.V., Eds., New York: Wiley Int., 1985, p. 211.

  7. Andrade, C.K.Z., Matos, R.A.F., Oliveira, V.B., et al., J. Therm. Anal. Calorim., 2010, vol. 99, p. 539.

    Article  Google Scholar 

  8. Thangamani, R., Chinnaswamy, T.V., Palanichamy, S., et al., J. Therm. Anal. Calorim., 2010, vol. 100, p. 651.

    Article  Google Scholar 

  9. Tatro, S.R., Clayton, L.M., Muisener, P.A.O., et al., Polymer, 2004, vol. 45, p. 1971.

    Article  Google Scholar 

  10. Kuljanin-Jakovljevic, J., Stojanovic, Z., and Nedeljkovic, J., J. Mater. Sci., 2006, vol. 41, p. 5014.

    Article  Google Scholar 

  11. Zheng, J., Goh, S.H., and Lee, S.Y., Polym. Bull., 1997, vol. 39, p. 79.

    Article  Google Scholar 

  12. Katiyar, R., Bag, D.S., and Nigam, I., Thermochim. Acta, 2013, vol. 557, p. 55.

    Article  Google Scholar 

  13. Kropka, J.M., Putz, K.W., Pryamitsyn, V., et al., Macromolecules, 2007, vol. 40, p. 5424.

    Article  Google Scholar 

  14. Zanotto, A., Spinella, A., Nasillo, G., et al., eXPRESS Polym. Lett., 2012, vol. 6, p. 410.

    Article  Google Scholar 

  15. Abdullaev, Kh.M. and Shoimov, E., Dokl. Akad. Nauk Resp. Tadzh., 2010, vol. 53, no. 2, p. 117.

    Google Scholar 

  16. Abdullaev, Kh.M., Shoimov, E., and Tabarov, F., Dokl. Akad. Nauk Resp. Tadzh., 2011, vol. 54, no. 11, p. 901.

    Google Scholar 

  17. Hu, Y.-H., Chen, C.-Y., and Wang, C.-C., Polym. Degrad. Stab., 2004, vol. 84, p. 545.

    Article  Google Scholar 

  18. Ash, B.J., Schadler, L.S., and Siegel, R.W., Mater. Lett., 2002, vol. 55, p. 83.

    Article  Google Scholar 

  19. Abdullaev, Kh.M. and Shoimov, E., Dokl. Akad. Nauk Resp. Tadzh., 2009, vol. 52, p. 950.

    Google Scholar 

  20. Roldugin, V.I., Serenko, O.A., Getmanova, E.V., et al., Dokl. Phys. Chem., 2013, vol. 449, no. 2, pp. 83–87.

    Article  Google Scholar 

  21. Lee, K.J., Lee, D.K., Kim, Y.W., et al., J. Polym. Sci., Part B: Polym. Phys., 2007, vol. 45, p. 2232.

    Article  Google Scholar 

  22. Vinogradova, L.V., Melenevskaya, E.Yu., Kever, E.E., et al., Polym. Sci., Ser. A, 1997, vol. 39, no. 11, pp. 1149–1154.

    Google Scholar 

  23. Sabban, J.R., Xu-Wu, A., Chichos, J.S., et al., Thermochim. Acta, 1999, vol. 331, p. 93.

    Article  Google Scholar 

  24. Tugov, I.I. and Kostrykina, G.I., Khimiya i fizika polimerov (Chemistry and Physics of Polymers), Moscow: Khimiya, 1989.

    Google Scholar 

  25. Tsagaropoulos, G. and Eisenberg, A., Macromolecules, 1995, vol. 28, p. 396.

    Article  Google Scholar 

  26. Tsagaropoulos, G. and Eisenberg, A., Macromolecules, 1995, vol. 28, p. 6067.

    Article  Google Scholar 

  27. Robertson, C.G. and Rackaitis, M., Macromolecules, 2011, vol. 44, p. 1177.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Noskov.

Additional information

Original Russian Text © O.V. Alekseeva, A.V. Noskov, S.S. Guseynov, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 6, pp. 628–632.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, O.V., Noskov, A.V. & Guseynov, S.S. Features of the thermal behavior of PMMA/C60 film composites. Prot Met Phys Chem Surf 52, 1019–1023 (2016). https://doi.org/10.1134/S2070205116060034

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116060034

Navigation