Skip to main content
Log in

Inhibition of corrosion of Cu(II) in HNO3 using substituted hydroxytriazene

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Inhibition effect of some hydroxytriazenes on copper in nitric acid medium has been studied using weight loss technique at temperature range between 303 to 343 K. The used hydroxytriazene compounds are 3-Hydroxy-3-phenyl-1-(4-sulphonato(sodium salt) phenyl) triazene(HPST), 3-Hydroxy-3-(3-methylphenyl)- 1-(4-sulphonato(sodium salt) phenyl) triazene(HMMPST), 3-Hydroxy-3-(4-methylphenyl)-1-(4-sulphonato (sodium salt) phenyl) triazene (HPMPST), 3-Hydroxy-3-(3-chloroplenyl-(4-sulphonato (sodiumsalt) phenyl) triazene (HMCPST), 3-Hydroxy-3-(4-chloroplenyl-(4-sulphonato (sodiumsalt)phenyl) triazene (HPCPST). Results reveal that inhibition efficiency increases with increasing concentration of hydroxytriazenes from 0.0005 to 0.002 M in following order HPMPST > HPST > HMMPST > HPCPST > HMCPST. HPMPST compound in 0.002M concentration show maximum inhibition efficiency of ~90 at % 303 K temperature. Effect of temperature on inhibition efficiency and thermodynamic parameters have also been reported. The adsorption of hydroxytriazenes obeyed Langmuir Adsorption Isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saini, V. and Kumar, H., Res. J. Chem. Sci., 2014, vol. 4, p. 45.

    Google Scholar 

  2. Prabhakaran, M., Ramesh, S., and Periyasamy, V., Res. J. Chem. Sci., 2014, vol. 4, p. 41.

    Google Scholar 

  3. Fouda, A.S., Haddad, E.L., and Abdallah, Y.M., Int. J. Inno. Res. Sci., 2013, vol. 2, p. 7073.

    Google Scholar 

  4. Ana, T., Simonovi, C., Marija, B., et al., Chem. Pap., 2014, vol. 68, p. 362.

    Google Scholar 

  5. Abdel Rahman, H.H., Moustafa, A.H.E., and Awad, M.K., Int. J. Electrochem. Sci., 2012, vol. 7, p. 1266.

    Google Scholar 

  6. Yurt, A., et al., Ind. Eng. Chem. Res., 2011, vol. 50, p. 8073.

    Article  Google Scholar 

  7. Yanardag, T., Ozbay, S., Dincer, S., and Aksut, A., Asian J. Chem., 2012, vol. 24, p. 47.

    Google Scholar 

  8. Zhang, Q. and Zhongren, Z., Int. J. Electrochem. Sci., 2013, vol. 8, p. 10239.

    Google Scholar 

  9. Gupta, S.L., Dia, A., and Quraishi, M.A., J. Mater. Environ. Sci., 2015, vol. 6, p. 168.

    Google Scholar 

  10. Sherif, E.M., Int. J. Electrochem. Sci., 2012, vol. 7, p. 1884.

    Google Scholar 

  11. Fouda, A.S., Elmors, M.A., Fayed, T., and El Said, M., Res. J. Chem. Sci., 2014, vol. 4, p. 62.

    Google Scholar 

  12. Kumar, S., Garg, M., Chundawat, N.S., et al., J. Chem., 2009, vol. 6, p. 257.

    Google Scholar 

  13. Mistry, M., Patel, N.S., Patel, M.J., and Jauhari, S., Res. Chem. Intermed., 2011, vol. 37, p. 659.

    Article  Google Scholar 

  14. Omyma, R. and Khalifa Shadyia, M., Port. Electrochim. Acta, 2011, vol. 29, p. 47.

    Article  Google Scholar 

  15. Fouda, A., Haddad, M., and Abdallah, M., Int. J. Innov. Res. Sci. Eng. Technol., 2013, vol. 2, p. 7073.

    Google Scholar 

  16. Ahamad, I., Prasad, R., and Quraishi, A., Corros. Sci., 2010, vol. 52, p. 3033.

    Article  Google Scholar 

  17. Patel, N.S., Jauhari, S., Mehta, G.N., et al., Int. J. Electrochem. Sci., 2013, vol. 8, p. 2635.

    Google Scholar 

  18. Li, X.H., Deng, S.D., Mu, G.N., et al., Corros. Sci., 2008, vol. 50, p. 420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Goswami.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Soni, A., Baroliya, P.K. et al. Inhibition of corrosion of Cu(II) in HNO3 using substituted hydroxytriazene. Prot Met Phys Chem Surf 52, 930–935 (2016). https://doi.org/10.1134/S2070205116050221

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116050221

Navigation