Skip to main content
Log in

Elaboration and microstructural characterization of calcareous/ceria based composite on zinc substrate

  • New Substances, Materials, and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Cerium conversion coatings were prepared by cathodic electrodeposition from a low concentrated aqueous solution of Ce(NO3)3 with KNO3 addition to insure the conductivity of the electrolyte. The cerium oxide film was characterized by Scanning Electronic Microscopy (SEM). Although the deposit is uniform with current density of 2 mA/cm2, it shows cauliflower morphology with a crack network, giving rise to bad mechanical and electrochemical behaviour. Elaboration of a calcareous deposit inside crack network of the cerium coating by cathodic polarization from artificial seawater is investigated at different applied potential, in order to increase the quality of the cerium coating formed. For cathodic potentials lower than–1.5 V/SCE, zinc corrosion products (gordaite) were observed inside the cerium oxide film instead of calcareous deposit although the current density decrease during the deposition suggesting a partially blocked surface. A pure calcareous compound was observed at–1.5 and–1.6 V/SCE. SEM and EDX cartography of the cross section revealed that open cracks in the cerium oxide structure are filled by calcium. Calcium was also detected inside the CeO2 film not only all around the cracks but also in all the porosity of the CeO2 film. It has precipitated as CaCO3 (aragonite form) as revealed by micro-Raman spectroscopy and XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mora, N., Cano, E., Polo, J., et al., Corros. Sci., 2004, vol. 46, p. 563.

    Article  Google Scholar 

  2. Arenas, M.A., Garcia, I., and de Damborenea, J., Corros. Sci., 2004, vol. 46, p. 1033.

    Article  Google Scholar 

  3. Yu, X. and Li, G., J. Alloys Compd., 2004, vol. 364, p. 193.

    Article  Google Scholar 

  4. Fahrenholtz, W.G., O’Kefe, M.J., Zhou, H., et al., Surf. Coat. Technol., 2002, vol. 155, p. 208.

    Article  Google Scholar 

  5. Tang, J., Han, Z., Zuo, Y., et al., Surf. Sci., 2011, vol. 257, p. 2806.

    Article  Google Scholar 

  6. Zivkovic, Lj.S., Popic, J.P., Jegdic, B.V., et al., Surf. Coat. Technol., 2014, vol. 240, p. 327.

    Article  Google Scholar 

  7. Stefanov, P., Atanasova, G., Stoychev, D., et al., Surf. Coat. Technol., 2004, vols. 180–181, p. 446.

    Article  Google Scholar 

  8. Avramova, I., Stefanov, P., Nicolova, D., et al., Compos. Sci. Technol., 2005, vol. 65, p. 1663.

    Article  Google Scholar 

  9. Creus, J., Brezault, F., Rebere, C., et al., Surf. Coat. Technol., 2006, vol. 200, p. 4636.

    Article  Google Scholar 

  10. Poupard, S., Pedraza, F., and Creus, J., Adv. Mater. Sci., 2007, vol. 7, p. 300.

    Google Scholar 

  11. Virtanen, S., Ives, M.B., Sproule, G.I., et al., Corros. Sci., 1997, vol. 39, p. 1897.

    Article  Google Scholar 

  12. Golden, T.D. and Wang, A.Q., J. Electrochem. Soc., 2003, vol. 150, p. C621.

    Article  Google Scholar 

  13. Stoychev, D., J. Solid State Electrochem., 2013, vol. 17, p. 497.

    Article  Google Scholar 

  14. Arenas, M.A., Conde, A., and de Damborenea, J.J., Corros. Sci., 2002, vol. 44, p. 511.

    Article  Google Scholar 

  15. Liu, H., Yang, J., Liang, H.-H., et al., J. Power Sources, 2001, vol. 93, p. 230.

    Article  Google Scholar 

  16. Lei, L., Wang, X., Tang, Q., et al., Surf. Interface Anal., 2014, vol. 46, p. 556.

    Article  Google Scholar 

  17. Montemor, M., Simoes, A.M., and Ferreira, M.G.S., Prog. Org. Coat., 2001, vol. 43, p. 274.

    Article  Google Scholar 

  18. Arenas, M.A. and de Damborenea, J.J., Electrochim. Acta, 2003, vol. 48, p. 3693.

    Article  Google Scholar 

  19. Ferreira, M.G.S., Duarte, R.G., Montemor, M.F., et al., Electrochim. Acta, 2004, vol. 49, p. 2927.

    Article  Google Scholar 

  20. Motte, C., Maury, N., Olivier, M.-G., et al., Surf. Coat. Technol., 2005, vol. 200, p. 2366.

    Article  Google Scholar 

  21. Poupard, S., Pedraza, F., and Creus, J., Defect Diffus. Forum, 2009, vols. 289–292, p. 235.

    Article  Google Scholar 

  22. Deflorian, F., Fedel, M., Rossi, S., et al., Electrochim. Acta, 2011, vol. 56, p. 7833.

    Article  Google Scholar 

  23. Aramaki, K., Corros. Sci., 2001, vol. 43, p. 2201.

    Article  Google Scholar 

  24. Aramaki, K., Corros. Sci., 2003, vol. 45, p. 2361.

    Article  Google Scholar 

  25. Aramaki, K., Corros. Sci., 2005, vol. 47, p. 1285.

    Article  Google Scholar 

  26. Aramaki, K., Corros. Sci., 2006, vol. 48, p. 766.

    Article  Google Scholar 

  27. Aramaki, K., Corros. Sci., 2006, vol. 48, p. 3298.

    Article  Google Scholar 

  28. Arenas, M.A. and Damborenea, J., Corros. Sci., 2006, vol. 48, p. 3196.

    Article  Google Scholar 

  29. Martinez, L., Roman, E., de Segovia, J.L., et al., Appl. Surf. Sci., 2011, vol. 257, p. 6202.

    Article  Google Scholar 

  30. Barchiche, C., Deslouis, C., Gil, O., et al., Electrochim. Acta, 2004, vol. 49, p. 2833.

    Article  Google Scholar 

  31. Rousseau, C., Baraud, F., et al., Electrochim. Acta, 2009, vol. 55, p. 196.

    Article  Google Scholar 

  32. Karoui, H., Riffault, B., Jeannin, M., et al., Desalination, 2013, vol. 311, p. 234.

    Article  Google Scholar 

  33. Devos, O., Jakab, S., Gabirelli, C., et al., J. Cryst. Growth, 2009, vol. 311, p. 4334.

    Article  Google Scholar 

  34. Ben Amor, Y., Bousselmi, L., Tribollet, B., et al., Electrochim. Acta, 2010, vol. 55, p. 4820.

    Article  Google Scholar 

  35. Deslouis, C., Falaras, P., Gil, O., et al., Electrochim. Acta, 2006, vol. 51, p. 3173.

    Article  Google Scholar 

  36. Zhitomirsky, I. and Petric, A., Mater. Lett., 1999, vol. 40, p. 263.

    Article  Google Scholar 

  37. Hamlaoui, Y., Pedraza, F., and Remazeille, C., Mater. Chem. Phys., 2009, vol. 113, p. 650.

    Article  Google Scholar 

  38. Arurault, L., Monsang, P., Salley, J., et al., Thin Solid Films, 2004, vol. 466, p. 75.

    Article  Google Scholar 

  39. Sylla, D., Savall, C., Gadouleau, M., et al., Surf. Coat. Technol., 2005, vol. 200, p. 2137.

    Article  Google Scholar 

  40. Zhitomirsky, I. and Petric, A., Ceram. Int., 2001, vol. 27, p. 149.

    Article  Google Scholar 

  41. Arurault, L., Monsang, P., Salley, J., et al., Thin Solid Films, 2004, vol. 466, p. 75.

    Article  Google Scholar 

  42. Cole, I.S., Muster, T.H., Furman, S.A., et al., J. Electrochem. Soc., 2008, vol. 155, p. C244.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jeannin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aiouaz, F., Jeannin, M., Creus, J. et al. Elaboration and microstructural characterization of calcareous/ceria based composite on zinc substrate. Prot Met Phys Chem Surf 52, 894–899 (2016). https://doi.org/10.1134/S2070205116050026

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116050026

Navigation