Skip to main content
Log in

Effect of SO4 2-, Cl and NO3 - anions on the formation of iron oxide nanoparticles via microwave synthesis

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In the present work iron oxide nanoparticles have been prepared by microwave assisted synthesis with the influence of different precursor salts and synthesis of magnetite, hematite, Iron oxide hydroxide and maghemite nanoparticles. Synthesized iron oxide nanoparticles were characterized with Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscopy (FESEM), and Energy-dispersive X-ray Spectroscopy (EDX). XRD measurements show that the peaks of diffractogram are in agreement with the theoretical data of magnetite, hematite, FeO(OH) (Iron oxide hydroxide) and maghemite. Crystallite size of the particles was found to be 33, 45, 36 and 43.5 nm for Fe3O4, α-Fe2O3, FeO(OH) and γ-Fe2O3. FESEM studies indicated that size of the particles is observed in the range of about 19.4 to 46.7 nm (Fig. 2a, average 32 nm), 29.1 to 67.6 nm (Fig. 2b average 45 nm), 29.1 to 40.8 (Fig. 2c average 36.6 nm), 29.1 to 80 nm (Fig. 2d average 43.5) for Fe3O4, α-Fe2O3, FeO(OH) and γ-Fe2O3 respectively. EDX spectral analysis reveals the presence of carbon, oxygen, iron in the synthesized nanoparticles. The FTIR graphs indicated absorption bands due to O–H stretching, C–O bending, C–H stretching and Fe–O stretching vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teja, A.S. and Koh, P.-Y., Prog. Cryst. Growth Charact. Mater., 2009, vol. 55, p. 22.

    Article  Google Scholar 

  2. Rosenzweig, R.E., Ferrohydrodynamics, Cambridge: Cambridge Univ. Press, 1985.

    Google Scholar 

  3. Berry, C.C. and Curtis, A.S.G., J. Phys. D: Appl. Phys., 2003, vol. 36, p. 198.

    Article  Google Scholar 

  4. Thach, C.V., Hai, N.H., and Chau, N.J., J. Korean Phys. Soc., 2008, vol. 52, p. 1332.

    Article  Google Scholar 

  5. Leslie-Pelecky, D.L., Labhasetwar, V., and Kraus, R.H., in Advanced Magnetic Nanostructures, Sellmyer, D.J. and Skomski, R.S., Eds., New York: Kluwer, 2005.

  6. Zboril, R., Mashlan, M., and Petridis, D., Chem. Mater., 2002, vol. 14, p. 969.

    Article  Google Scholar 

  7. Cao, H. and Suib, S.L., J. Am. Chem. Soc., 1994, vol. 133, p. 460.

    Google Scholar 

  8. Mohapatra, M. and Anand, S., Int. J. Environ. Sci. Technol., 2010, vol. 2, p. 127.

    Google Scholar 

  9. Hasany, S.F., Ahmed, I., Rajan, J., and Rehman, A., Nanosci. Nanotechnol., 2012, vol. 2, p. 148.

    Article  Google Scholar 

  10. Cheng, Z., Tan, A.L.K., Tao, Y., et al., Int. J. Photoenergy, 2012, vol. 2012, pp. 1–5. Article ID608298. doi: doi 10.1155/2012/60829810.1155/2012/608298

    Google Scholar 

  11. Benyettou, F., Milosevic, I., Olsen, J.C., et al., J. Bioanal. Biomed., 2012, p. 5. doi 10.4172/1948-593X.S5-006

    Google Scholar 

  12. Parsons, J.G., Luna, C., Botez, C.E., et al., J. Phys. Chem. Solids, 2009, vol. 70, p. 555.

    Article  Google Scholar 

  13. Powder Diffraction File Alphabetical Index. Inorganic Phases, Swarthmore, PA: Int. Center for Diffraction Data, 1984, p. 1601.

  14. Peng, Q., Dong, Y.J., and Li, Y.D., Angew. Chem., Int. Ed., 2003, vol. 42, p. 3027.

    Article  Google Scholar 

  15. Peng, Q., Xu, S., Zhuang, Z.B., et al., Small, 2005, vol. 1, p. 216.

    Article  Google Scholar 

  16. Sun, X.M. and Li, Y.D., Angew. Chem., Int. Ed., 2004, vol. 43, p. 3827.

    Article  Google Scholar 

  17. Sun, X.M. and Li, Y.D., Angew. Chem., Int. Ed., 2004, vol. 43, p. 597.

    Article  Google Scholar 

  18. Wang, J.W., Wang, X., Peng, Q., and Li, Y.D., Inorg. Chem., 2004, vol. 43, p. 7552.

    Article  Google Scholar 

  19. Zhang, Y. and Li, Y.D., J. Phys. Chem. B, 2004, vol. 108, p. 17805.

    Article  Google Scholar 

  20. Phu, N.D., Ngo, D.T., Hoang, L.H., et al., J. Phys. D: Appl. Phys., 2011, vol. 44, p. 34.

    Article  Google Scholar 

  21. Stuart, B.H., Infrared Spectroscopy: Fundamentals and Applications, Chichester: Wiley, 2004.

    Book  Google Scholar 

  22. Battisha, J.K., Afify, H.H., and Ibrahim, M., J. Magn. Magn. Mater., 2006, vol. 306, p. 211.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sapana Guru.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guru, S., Mishra, D., Singh, M. et al. Effect of SO4 2-, Cl and NO3 - anions on the formation of iron oxide nanoparticles via microwave synthesis. Prot Met Phys Chem Surf 52, 627–631 (2016). https://doi.org/10.1134/S2070205116040146

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116040146

Navigation