Skip to main content
Log in

Effects of SiC particles size on electrochemical properties of electroless Ni-P-SiC nanocomposite coatings

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Silicon carbide (SiC) nanoparticles were co-deposited by electroless deposition in nickel-phosphorous (Ni–P) acidic bath. In order to understand the size effect of SiC nanoparticles on the electrochemical properties of the coatings, SiC nano particles with different size (20, 50 and 200 nm) in 2 g/L concentration was added to the bath. All samples was heat treated in 400°C in order to obtain crystalline structure. Potentiodynamic polarization and electrochemical impedance spectroscopy was employed to examine of corrosion performance of the coatings. X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) were used for phase and morphological studies, respectively. Experimental results show that SiC particles size in the coating bath affected both composition and morphology of the coating. Presence of SiC nanoparticles in the Ni–P coating with 50 nm increased the corrosion resistance of the coating more than the other sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Farzaneh, A., et al., J. Coat. Technol. Res., 2010, vol. 7, p. 547.

    Article  Google Scholar 

  2. Azizi, A., Mohammadi, M., and Sadrnezhaad, S., Mater. Lett., 2011, vol. 65, p. 289.

    Article  Google Scholar 

  3. Farzaneh, A., Ehteshamzadeh, M., and Mohammadi, M., J. Appl. Electrochem., 2011, vol. 41, p. 19.

    Article  Google Scholar 

  4. Mallory, G.O. and Hajdu, J.B., Electroless Plating: Fundamentals and Applications, New York: William Andrew Publ., 1990.

    Google Scholar 

  5. Farzaneh, A., et al., Appl. Surf. Sci., 2013, vol. 276, p. 697.

    Article  Google Scholar 

  6. Mohammadi, M. and Ghorbani, M., J. Coat. Technol. Res., 2011, vol. 8, p. 527.

    Article  Google Scholar 

  7. Mohammadi, M., Ghorbani, M., and Azizi, A., J. Coat. Technol. Res., 2010, vol. 7, p. 697.

    Article  Google Scholar 

  8. Lee Hong-Kee, Lee Ho-Young, and Jeon Jun-Mi, Surf. Coat. Technol., 2007, vol. 201, p. 7.

    Google Scholar 

  9. Sahoo, P. and Das, S.K., Mater. Des., 2011, vol. 32, p. 1760.

    Article  Google Scholar 

  10. Grosjean, A., et al., Surf. Coat. Technol., 2001, vol. 137, p. 92.

    Article  Google Scholar 

  11. Chen, X., et al., Tribol. Int., 2006, vol. 39, p. 22.

    Article  Google Scholar 

  12. Agarwala, R. and Agarwala, V., Sadhana, 2003, vol. 28, p. 475.

    Article  Google Scholar 

  13. Balaraju, J., Narayanan, T.S., and Seshadri, S., J. Appl. Electrochem., 2003, vol. 33, p. 807.

    Article  Google Scholar 

  14. Rezagholizadeh, M., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 2, p. 234.

    Article  Google Scholar 

  15. Petukhov, I.V., et al., Prot. Met. Phys. Chem. Surf., 2002, vol. 38, no. 4, p. 370.

    Google Scholar 

  16. Arman Zarebidaki, S.R.A., Compos. Sci. Technol., 2011, vol. 471, p. 203.

    Google Scholar 

  17. Vaezi, M.R., Sadrnezhaad, S.K., and Nikzad, L., Colloids Surf., A, 2008, vol. 315, p. 176.

    Article  Google Scholar 

  18. Apachitei, I.D.J., Katgerman, L., and Overkamp, P.J.B., Scr. Mater., 1998, vol. 38, p. 1347.

    Article  Google Scholar 

  19. Zhang, S.H.K. and Cheng, L., Surf. Coat. Technol., 2008, vol. 202, p. 31.

    Google Scholar 

  20. Jiaqiang, G.L.L., Yating, W., Bin, S., and Wenbin, H., Surf. Coat. Technol., 2006, vol. 200, p. 5836.

    Article  Google Scholar 

  21. Yuan, X.-T., Yu, H.-Y., and Wang, Y., Int. J. Miner., Metall. Mater., 2009, vol. 16, p. 3.

    Google Scholar 

  22. de Hazan, Y., Zimmermann, D., Z’graggen, M., et al., Surf. Coat. Technol., 2010, vol. 204, p. 3464.

    Article  Google Scholar 

  23. Lekka, M.L.A., Casagrande, A., de Leitenburg, C., et al., Surf. Coat. Technol., 2012, vol. 206, p. 3658.

    Article  Google Scholar 

  24. Sarret, M.M.C. and Amell, A., Surf. Coat. Technol., 2006, vol. 201, p. 389.

    Article  Google Scholar 

  25. Khosroshahi, N.B., et al., Ceram. Int., 2014, vol. 40, p. 12149.

    Article  Google Scholar 

  26. Seipenbusch, S.R., Kirchhoff, M., Schmid, H.-J., et al., J. Nanopart. Res., 2010, vol. 12, p. 2037.

    Article  Google Scholar 

  27. Mitsugiinkyo, T.T., J. Soc. Powder Technol., Jpn., 2004, vol. 41, p. 8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Farzaneh.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzaneh, A., Ehteshamzadeh, M., Can, M. et al. Effects of SiC particles size on electrochemical properties of electroless Ni-P-SiC nanocomposite coatings. Prot Met Phys Chem Surf 52, 632–636 (2016). https://doi.org/10.1134/S2070205116040109

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116040109

Navigation