Skip to main content
Log in

Experimental evaluation of quinolinium and isoquinolinium derivatives as corrosion inhibitors of mild steel in 0.5 M H2SO4 solution

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The 1-methylquinolinium iodide (I) Qui+, I and 2-methylisoquinolinium iodide isoQui+, I were investigated as a corrosion inhibitors for mild steel in sulfuric acid using electrochemical impedance spectroscopy and potentiodynamic polarization techniques. The results indicated that the corrosion inhibition efficiency and extent of surface coverage were increased with increase in inhibitors concentrations. Polarization curves revealed that both inhibitors acted as a mixed-type inhibitor. The thermodynamic parameters were evaluated for corrosion inhibition process. The adsorption of both inhibitors on mild steel surface obeyed Langmuir adsorption isotherm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perez, N., Electrochemistry and Corrosion Science, Boston: Kluwer Academic Publ., 2004.

    Book  Google Scholar 

  2. Traibanelli, G., Corrosion, 1991, vol. 47, p. 410.

    Article  Google Scholar 

  3. Prabhu, R.A., Venkatesha, T.V., Shanbhag, A.V., et al., Corros. Sci., 2008, vol. 50, p. 3356.

    Article  Google Scholar 

  4. Deng, S., Li, X., and Fu, H., Corros. Sci., 2011, vol. 53, p. 3596.

    Article  Google Scholar 

  5. Bouklah, M., Ouassini, A., Hammouti, B., and El Idrissi, A., Appl. Surf. Sci., 2005, vol. 250, p. 50.

    Article  Google Scholar 

  6. Ebenso, E.E., Okafor, P.C., Offiong, O.E., et al., Bull. Electrochem., 2001, vol. 17, p. 259.

    Google Scholar 

  7. Cao, Z., Tang, Y., Cang, H., et al., Corros. Sci., 2014, vol. 83, p. 292.

    Article  Google Scholar 

  8. Ebenso, E.E., Okafor, P.C., Offiong, O.E., et al., Bull. Electrochem., 2001, vol. 17, p. 259.

    Google Scholar 

  9. Moretti, G., Quartarone, G., Tassan, A., and Zingales, A., Electrochim. Acta, 1996, vol. 41, p. 1971.

    Article  Google Scholar 

  10. Wang, L., Corros. Sci., 2001, vol. 43, p. 2281.

    Article  Google Scholar 

  11. Ouchrif, A., Zegmout, M., Hammouti, B., et al., Appl. Surf. Sci., 2005, vol. 252, p. 339.

    Article  Google Scholar 

  12. Tang, L.B., Li, X.M., Si, Y.S., et al., Mater. Chem. Phys., 2006, vol. 95, p. 29.

    Article  Google Scholar 

  13. Frignani, A., Zucchi, F., and Monticelli, C., Br. Corros. J., 1983, vol. 18, p. 19.

    Article  Google Scholar 

  14. Schweinsberg, D.P. and Ashworth, V., Corros. Sci., 1988, vol. 28, p. 539.

    Article  Google Scholar 

  15. Chernyshov, I.Yu., Levin, V.V., Dilman, A.D., et al., Russ. Chem. Bull., 2010, vol. 59, p. 2102.

    Article  Google Scholar 

  16. Carreon, J.R., Mahon, K.P., Jr., and Kelley, S.O., Org. Lett., 2004, vol. 6, p. 517.

    Article  Google Scholar 

  17. Safak, S., Duran, B., Yurt, A., and Turkoglu, G., Corros. Sci., 2012, vol. 54, p. 251.

    Article  Google Scholar 

  18. Finšgar, M., Lesae, A., Kokalj, A., and Milošev, I., Electrochim. Acta, 2008, vol. 53, p. 8287.

    Article  Google Scholar 

  19. Lebrini, M., Lagrenee, M., Traisnel, M., et al., Appl. Surf. Sci., 2007, vol. 253, p. 9267.

    Article  Google Scholar 

  20. Solmaz, R., Corros. Sci., 2010, vol. 52, p. 3321.

    Article  Google Scholar 

  21. Ehteshamzadeh, M., Jafari, A., Naderia, E., and Hosseini, M., Mater. Chem. Phys., 2009, vol. 113, p. 986.

    Article  Google Scholar 

  22. Behpour, M., Ghoreishi, S., Soltani, N., and Salavati-Niasari, M., Corros. Sci., 2009, vol. 51, p. 1073.

    Article  Google Scholar 

  23. Emregül, K., Düzgün, E., and Atakol, O., Corros. Sci., 2006, vol. 48, p. 3243.

    Article  Google Scholar 

  24. Prabhu, R.A., Venkatesha, T.V., Shanbhag, A.V., et al., Corros. Sci., 2008, vol. 50, p. 3356.

    Article  Google Scholar 

  25. Tang, Y., Yang, X., Yang, W., et al., Corros. Sci., 2010, vol. 52, p. 242.

    Article  Google Scholar 

  26. Goulart, C., Esteves-Souza, A., Martinez-Huitle, C., et al., Corros. Sci., 2013, vol. 67, p. 281.

    Article  Google Scholar 

  27. Hegazy, M.A., Hasan, A.M., Emara, M.M., et al., Corros. Sci., 2012, vol. 65, p. 67.

    Article  Google Scholar 

  28. Musa, A.Y., Corros. Sci., 2010, vol. 52, p. 3331.

    Article  Google Scholar 

  29. Bouklah, M., Hammouti, B., Lagrenee, M., and Bentiss, F., Corros. Sci., 2006, vol. 48, p. 2831.

    Article  Google Scholar 

  30. Singh, A.K. and Quraishi, M.A., Corros. Sci., 2009, vol. 51, p. 2752.

    Article  Google Scholar 

  31. Bentiss, F., Lebrini, M., Vezin, H., et al., Corros. Sci., 2009, vol. 51, p. 2165.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Said Mohamed Elhadi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhadi, S.M., Bilel, M., Abdelmalek, B. et al. Experimental evaluation of quinolinium and isoquinolinium derivatives as corrosion inhibitors of mild steel in 0.5 M H2SO4 solution. Prot Met Phys Chem Surf 52, 731–736 (2016). https://doi.org/10.1134/S2070205116040092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116040092

Navigation