Skip to main content
Log in

Regulation of sorption processes in natural nanoporous aluminosilicates. 2. Determination of the ratio between active sites

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The ratio of acidic and basic sites on natural aluminosilicates (clinoptilolite, nontronite, and glauconite) and their acidic and basic forms were determined based on the catalytic activity of the samples in the reaction of methylbutynol (MBOH) conversion. Conversion of MBOH took place most fully on the natural zeolite (clinoptilolite). The reagent modification of clinoptilolite(treatment with sulfuric acid and alkali) reduced the ratio of acidic and basic sites. Conversion of MBOH on clay minerals increased in the acid-modified samples and decreased upon the alkali treatment, which corresponds to the change in the ratio of acidic and basic sites in both nontronite and glauconite, but to a greater extent in spherulite-like clay mineral glauconite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bel'chinskaya, L.I., Khodosova, N.A., Strel’nikova, O.Yu., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 5, pp. 779–786.

    Article  Google Scholar 

  2. Developments in Clay Science, vol. 5: Handbook of Clay Science, Bergaya, F. and Lagaly, G., Eds., Amsterdam: Elsevier, 2013.

  3. Tarasevich, Yu.I. and Ovcharenko, F.D., Adsorbtsiya na glinistykh mineralakh (Adsorption by Clay Minerals), Kiev: Naukova Dumka, 1975.

    Google Scholar 

  4. Singer, A. and Galan, E., Developments in Palygorskite-Sepiolite Research, Amsterdam: Elsevier, 2011.

    Google Scholar 

  5. Mikhailova, O.A. and Lygina, T.Z., Prot. Met. Phys. Chem. Surf., 2010, vol. 46, no. 2, pp. 231–238.

    Article  Google Scholar 

  6. Blanco, C., Herrero, J., Mendioroz, S., and Pajares, J.A., Clays Clay Miner., 1988, vol. 36, p. 364.

    Article  Google Scholar 

  7. Sun Kou, M.R. and Mendioroz, S., Clays Clay Miner., 2000, vol. 48, p. 528.

    Article  Google Scholar 

  8. Alsawalha, M., Roessner, F., Novikova, L., and Bel’chinskaya, L., Proc. Int. Conf. WASET 2011, Singapore, Sept. 28–30, 2011, Singapore: World Academy of Science, Engineering and Technology, 2011, vol. 79, pp. 417–421.

    Google Scholar 

  9. Moura, K.O. and Pastore, H.O., Environ. Sci. Technol., 2013, vol. 47, p. 12201.

    Article  Google Scholar 

  10. Hang, P.T. and Brindley, G.W., Clays Clay Miner., 1970, vol. 18, p. 203.

    Article  Google Scholar 

  11. Lauron-Pernot, H., Catal. Rev., 2006, vol. 48, p. 315.

    Article  Google Scholar 

  12. Fomkin, A.A., Prot. Met. Phys. Chem. Surf., 2009, vol. 45, no. 2, pp. 121–136.

    Article  Google Scholar 

  13. Pushpaletha, P., Rugmini, S., and Lalithambika, M., Appl. Clay Sci., 2005, vol. 30, p. 141.

    Article  Google Scholar 

  14. Novikova, L., Bel’chinskaya, L., and Roessner, F., Russ. J. Phys. Chem. A, 2006, vol. 80, no.1, Suppl., pp. 185–188.

    Article  Google Scholar 

  15. Alsawalha, M., Roessner, F., Novikova, L., and Bel’chinskaya, L., Proc. Int. Conf. WASET 2011, Singapore, Sept. 28–30, 2011, Singapore: World Academy of Science, Engineering and Technology, 2011, vol. 79, p. 417.

    Google Scholar 

  16. Novikova, L.A., Roessner, F., Belchinskaya, L.I., et al., Appl. Clay Sci., 2014, vol. 101, p. 229.

    Article  Google Scholar 

  17. Novikova, L.A., Strelnikova, O.Yu., Khodosova, N.A., et al., Sorbtsionnye Khromatogr. Protsessy, 2014, vol. 14, no 2, p. 185.

    Google Scholar 

  18. Solomon, D.H. and Murray, H.H., Clays Clay Miner., 1972, vol. 20, p. 135.

    Article  Google Scholar 

  19. Liu, D., Yuan, P., Liu, H., et al., Appl. Clay Sci., 2011, vol. 52, p. 358.

    Article  Google Scholar 

  20. Senderov, E.E. and Khitarov, N.I., Tseolity, ikh sintez i usloviya obrazovaniya v prirode (Zeolites: Synthesis and Formation Conditions in Nature), Moscow: Nauka, 1970.

    Google Scholar 

  21. Köster, H.M., Ehrlicher, H.A., and Gilg, R., Clays Clay Miner., 1999, vol. 34, p. 579.

    Article  Google Scholar 

  22. International Database on Minerals MINDAT.ROG. http://www.mindat.org/min-1710.html.

  23. Khodosova, N.A., Cand. Sci. (Chem.) Dissertation, Ivanovo, 2009.

    Google Scholar 

  24. Novikova, L., Belchinskaya, L., Krupskaya, V., et al., Sorbtsionnye Khromatogr. Protsessy, 2015, vol. 5, p. 730.

    Google Scholar 

  25. Bondarenko, A.V., Cand. Sci. (Chem.) Dissertation, Lipetsk, 2002.

    Google Scholar 

  26. Alsawalha, M. and Roessner, F., React. Kinet. Catal. Lett., 2008, vol. 94, p. 63.

    Article  Google Scholar 

  27. Tarasevich, Yu.I., Prirodnye sorbenty v protsessakh ochistki vody (Natural Sorbents for Water Purification Processes), Kiev: Naukova Dumka, 1981.

    Google Scholar 

  28. Bogdanova, V.I. and Belitskii, I.A., Materialy Vsesoyuznogo seminara Sibirskogo otdeleniya AN SSSR (Proc. All-Union Seminar of Siberian Branch of USSR Academy of Sciences), Novosibirsk: Inst. of Geology and Geophysics Siberian Branch USSR Acad. Sci., 1985, p. 64.

    Google Scholar 

  29. http://chem21.info/info/1851201/.

  30. Kotova, D.L., Vasilyeva, S.Yu., Krysanova, T.A., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 4, pp. 499–504.

    Article  Google Scholar 

  31. Bogdanova, V.I. and Belitskii, I.A., Geol. Geofiz., 1986, no. 4, p. 44.

    Google Scholar 

  32. Vasilenko, L.V., Khim. Tekhnol. Topl. Masel, 1982, no. 6, p. 10.

    Google Scholar 

  33. Smirenskaya, V.N., Cand. Sci. (Eng.) Dissertation, Tomsk, 1998.

    Google Scholar 

  34. Gevorkyan, R.G., Khachatryan, Sh.V., and Sargsyan, A.O., Uch. Zap., Geol. Geogr., 2009, no. 1, p. 3.

    Google Scholar 

  35. Bobonich, F.M., Patrilyak, K.I., Levchuk, N.N., et al., Katal. Neftekhim., 2001, nos. 9–10, p. 98.

    Google Scholar 

  36. Dicle Bal Akkoca, Melek Yilgin, Melek Ural, et al., Geochem. Int., 2013, vol. 51, no. 6, pp. 495–504.

    Article  Google Scholar 

  37. Murat Akgul, Nese Burcu Savak, and Meryem Ozmak, Hacettepe J. Biol. Chem., 2008, vol. 36, p. 21.

    Google Scholar 

  38. Lygina, T.Z., Mikhailova, O.A., Khatsrinov, A.I., and Konyukhova, T.P., Tekhnologii khimicheskoi aktivatsii neorganicheskikh prirodnykh mineral’nykh sorbentov, (Inorganic Natural Mineral Sorbing Agents: Technologies of Chemical Activation), Kazan: Kazan State Technol. Univ., 2009.

    Google Scholar 

  39. Jin, L. and Dai, B., Appl. Surf. Sci., 2012, vol. 258, p. 3386.

    Article  Google Scholar 

  40. Mdivnishvili, O.M., Kristallokhimicheskie osnovy regulirovaniya svoistv prirodnykh sorbentov (Crystallochemical Basis for Controlling Properties of Natural Sorbents), Tbilisi: Metsniereba, 1983.

    Google Scholar 

  41. Altwasser, S., et al., Stud. Surf. Sci. Catal., 2004, vol. 154, p. 3098.

    Article  Google Scholar 

  42. Belyakova, L.D., Borovikova, S.A., Larionov, O.G., et al., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 6, pp. 691–697.

    Article  Google Scholar 

  43. Nasyrova, N.Yu., Kislotno-shchelochnaya obrabotka kaolina. Issledovanie adsorbtsionnykh proizvodstv i adsorbentov (Acid-Alkali Processing for Kaolin. Investigation of Absorption Manufacturing and Adsorbents), Tashkent: FAN, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Novikova.

Additional information

Original Russian Text © L.I. Bel’chinskaya, N.A. Khodosova, L.A. Novikova, O.Yu. Strel’nikova, F. Roessner, G.A. Petukhova, A.V. Zhabin, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 4, pp. 363–370.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bel’chinskaya, L.I., Khodosova, N.A., Novikova, L.A. et al. Regulation of sorption processes in natural nanoporous aluminosilicates. 2. Determination of the ratio between active sites. Prot Met Phys Chem Surf 52, 599–606 (2016). https://doi.org/10.1134/S2070205116040055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116040055

Navigation