Skip to main content
Log in

The effect of graphene oxide (GO) on biomineralization and solubility of calcium hydroxyapatite (HA)

  • New Materials and Coatings in Biology and Medicine
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Interaction between GO and the counterpart of the bone tissue, calcium hydroxyapatite Ca10(PO4)6(OH)2 (HA), is modeled in the course of synthesis of nanosize composite materials (CMs) based on graphene oxide (GO) and biocompatible HA with a GO content of 0.1, 1.0, 2.0, and 5.0 wt % GO from aqueous solutions in the system of Ca(OH)2–H3PO4–GO–H2O under native conditions (37°C). The effect of CM composition on the size and morphology of HA nanocrystals (HA NCs) is determined using the methods of physico-chemical analysis (chemical, XRD, IRS, DTA, TDG, SEM, TEM). The solubility of HA NC CMs by Ca2+ ions in distilled water is determined under in vitro conditions, and the possible results of interaction between GO and native calcified tissues are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanchez, V.C., Jachak, A., Hurt, R.H., et al., Chem. Res. Toxicol., 2012, vol. 25, no. 1, p. 15.

    Article  Google Scholar 

  2. Sasidharan, A., Panchakarla, L.S., Chandran, P., et al., Nanoscale, 2011, vol. 3, p. 2461.

    Article  Google Scholar 

  3. Akhavan, O. and Ghaderi, E., ACS Nano, 2010, vol. 4, p. 5731.

    Article  Google Scholar 

  4. Zhang, Y., Ali, S.F., Dervishi, E., et al., ACS Nano, 2010, vol. 4, p. 3181.

    Article  Google Scholar 

  5. Liao, K-H., Lin, Y-S., Macosko, C.W., et al., ACS Appl. Mater. Interfaces, 2011, vol. 3, p. 2607.

    Article  Google Scholar 

  6. Li, Y., Liu, Y., Fu, Y., Wei, T., et al., Biomaterials, 2012, vol. 33, p. 402.

    Article  Google Scholar 

  7. Chang, Y., Yang, S.-T., Liu, J.-H., et al., Toxicol. Lett., 2010, vol. 2010, p. 201.

    Google Scholar 

  8. Boehm, H.P., Clauss, A., Hofmann, U., et al., Z. Naturforschung., 1962, vol. 17, no. 3, p. 150.

    Google Scholar 

  9. Eda, G. and Chhowallal, M., Adv. Mater., 2010, vol. 22, p. 2392.

    Article  Google Scholar 

  10. World Intellectual Property Organization, 2012. http://patentscope.wipo.int/search/en/result.jsf

  11. Hench, L.L., J. Am. Ceram. Soc., 1998, vol. 81, p. 1705.

    Article  Google Scholar 

  12. Wei, M., Evans, J., and Bostrom, T., J. Mater. Sci. Mater. Med., 2003, vol. 14, p. 311.

    Article  Google Scholar 

  13. Zakharov, N.A., Belyaevskaya, T.V., and Chalykh, A.E., Kondens. Sredy Mezhfaznye Granitsy, 2006, vol. 8, no. 1, p. 18.

    Google Scholar 

  14. Orlovskii, V.P., Sukhanova, G.E., Ezhova, Zh.A., and Rodicheva, G.V., Zh. Ross. Khim. O-va, 1991, vol. 36, no. 6, p. 683.

    Google Scholar 

  15. Dorozhkin, S.V., Biomatter, 2011, vol. 1, no. 2, p. 121.

    Article  Google Scholar 

  16. Zakharov, N.A., Chalykh, A.E., Kalinnikov, V.T., et al., Sorbtsionnye Khromatogr. Protsessy, 2007, vol. 7, p. 791.

    Google Scholar 

  17. Hummers, W.S. and Offeman, R.E., J. Am. Chem. Soc., 1958, vol. 80, p. 1339.

    Article  Google Scholar 

  18. Kovtyukhova, N.I., Ollivier, P.J., Martin, B.R., et al., Chem. Mater., 1999, vol. 11, p. 771.

    Article  Google Scholar 

  19. Mahanandia, P., Vishwakarma, P., Nanda, K., et al., Mater. Res. Bull., 2006, vol. 41, p. 2311.

    Article  Google Scholar 

  20. Labunov, V., Shulitski, B., Prudnikava, A., and Yanushkevich, K., J. Phys.: Conf. Ser., 2008, vol. 100, p. 5.

    Google Scholar 

  21. Li, W., Liang, C., Zhou, W., et al., J. Phys. Chem. B, 2003, vol. 107, p. 6292.

    Article  Google Scholar 

  22. Zakharov, N.A., Chalykh, A.E., Kalinnikov, V.T., et al., Kondens. Sredy Mezhfaznye Granitsy, 2007, vol. 9, p. 112.

    Google Scholar 

  23. Ezhova, Zh.A., Zakharov, N.A., Koval’, E.M., and Kalinnikov, V.T., Russ. J. Inorg. Chem., 2009, vol. 54, no. 3, p. 477.

    Article  Google Scholar 

  24. Shen, L., Yang, H., Ying, J., et al., J. Mater. Sci. Mater. Med., 2009, vol. 20, p. 2259.

    Article  Google Scholar 

  25. Zakharov, N.A., Sentsov, M.Y., Kiselev, M.R., Klyuev, V.A., and Toporov, Y.P., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, p. 444.

    Article  Google Scholar 

  26. Zakharov, N.A., Sentsov, M.Y., Chalykh, A.E., and Kalinnikov, V.T., Prot. Met. Phys. Chem. Surf., 2013, vol. 49, no. 1, p. 80.

    Article  Google Scholar 

  27. Li, M., Wang, Y., Liu, Q., et al., J. Mater. Chem. B, 2013, p. 586.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Zakharov.

Additional information

Original Russian Text © N.A. Zakharov, A.G. Tkachev, L.I. Demina, M.R. Kiselev, V.T. Kalinnikov, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 4, pp. 412–423.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharov, N.A., Tkachev, A.G., Demina, L.I. et al. The effect of graphene oxide (GO) on biomineralization and solubility of calcium hydroxyapatite (HA). Prot Met Phys Chem Surf 52, 665–676 (2016). https://doi.org/10.1134/S2070205116020337

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116020337

Navigation