Skip to main content
Log in

Catalysis of oxygen reaction on positive electrode of a lithium–oxygen cell in the presence of metallic nanosystems

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Electrocatalytic characteristics of a series of carbon materials (carbon blacks XC-72 and Super P and also multiwall nanotubes) and binary metallic nanosystems formed on carbon black XC-72 (PtRu/C and PdRu/C) are studied in the cathodic and anodic reactions of the positive electrode of a lithium–oxygen cell with nonaqueous electrolyte in the first discharge/charging cycles. It is found that a significant decrease in the cell charging overpotential is observed at a transition from carbon supports to binary systems. Overvoltage of the cathodic process also decreases when DMSO-based electrolyte is used in the case of binary systems. The obtained results are due to acceleration of oxygen reduction (cell discharge stage) and facilitation of lithium peroxide oxidation (cell charging stage) on the PtRu/C and PdRu/C systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yamamoto, O., in The Lithium Battery: Fundamentals, Imanishi, N., Luntz, A.C., and Bruce, P.G., Eds., New York: Springer-Verlag, 2014, p. 1.

  2. Bruce, P.G., Freunberger, S., Hardwick, L., et al., Nat. Mater., 2012, vol. 11, no. 1, p. 19.

    Article  Google Scholar 

  3. Chase, M.W. Jr., NIST-JANAF Thermochemical Tables: Monograph, Washington, D.C.: Am. Chem. Soc., 1998, 4th ed.

    Google Scholar 

  4. Zheng, J.P., Liang, R.Y., Hendrickson, M., et al., J. Electrochem. Soc., 2008, vol. 155, p. A432.

    Article  Google Scholar 

  5. Imanishi, N. and Yamamoto, O., Mater. Today, 2014, vol. 17, p. 24.

    Article  Google Scholar 

  6. Hummelshøj, J.S., Luntz, A.C., and Nørskov, J.K., J. Chem. Phys., 2013, vol. 138, p. 034703.

    Article  Google Scholar 

  7. McCloskey, B.D., Scheffler, R., Speidel, A., et al., J. Am. Chem. Soc., 2011, vol. 133, p. 18038.

    Article  Google Scholar 

  8. Lu, Y.-Ch., Gasteiger, H.A., Parent, M.C., et al., Electrochem. Solid-State Lett., 2010, vol. 13, p. A69.

    Article  Google Scholar 

  9. Safari, M., Adams, B.D., and Nazar, L.F., J. Phys. Chem. Lett., 2014, vol. 5, p. 3486.

    Article  Google Scholar 

  10. Dathar, G.K.P., Shelton, W.A., and Xu, Y., J. Phys. Chem. Lett., 2012, vol. 3, p. 891.

    Article  Google Scholar 

  11. Greeley, J., Stephens, I.E.L., Bondarenko, A.S., et al., Nat. Chem., 2009, vol. 1, p. 552.

    Article  Google Scholar 

  12. Lu, Y.-Ch., Gasteiger, H.A. and Shao-Horn, Y., J. Am. Chem. Soc., 2011, vol. 133, p. 19048.

    Article  Google Scholar 

  13. Harding, J.R., Lu, Y.-Ch., Tsukada, Y., et al., Phys. Chem. Chem. Phys., 2012, vol. 14, p. 10540.

    Article  Google Scholar 

  14. Sun, B., Munroe, P. and Wang, G., Sci. Rep., 2013, vol. 3, p. 2247.

    Google Scholar 

  15. Jian, Z., Liu, P., Li, F., et al., Angew. Chem. Int. Ed., 2014, vol. 53, p. 442.

    Article  Google Scholar 

  16. Shen, Y., Sun, D., Yu, L., et al., Carbon, 2013, vol. 62, p. 288.

    Article  Google Scholar 

  17. Albertus, P., Girishkumar, G., McCloskey, B., et al., J. Electrochem. Soc., 2011, vol. 158, p. A343.

    Article  Google Scholar 

  18. Viswanathan, V., Thygesen, K.S., Hummelshoj, J.S., et al., J. Chem. Phys., 2011, vol. 135, p. 214704.

    Article  Google Scholar 

  19. Tripachev, O.V., Korchagin, O.V., Bogdanovskaya, V.A., and Tarasevich, M.R., Russ. J. Electrochem., 2016, vol. 52, no. 5, p. 456.

    Article  Google Scholar 

  20. Lu, Y.-Ch., Xu, Z., Gasteiger, H.A., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 12170.

    Article  Google Scholar 

  21. Yang, Y., Liu, W., Wang, Y., et al., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 20618.

    Article  Google Scholar 

  22. Avakov, T.B., Aliev, A.D., Bogdanovskaya, V.A., Ivanitskii, B.A., Kazanskii, L.P., Kapustin, A.V., Korchagin, O.V., Landgraf, I.K., Tarasevich, M.P., and Chalykh, A.E., Russ. J. Phys. Chem. A, 2015, vol. 89, no. 5, p. 887.

    Article  Google Scholar 

  23. NIST X-ray Photoelectron Spectroscopy Database. http://srdata.nist.gov/xps/EnergyTypeValSrch.aspx.

  24. Chakroune, N., Viau, G., Ammar, S., et al., Langmuir, 2005, vol. 21, p. 6788.

    Article  Google Scholar 

  25. Tripachev, O.V., Maleeva, E.A., and Tarasevich, M.R., Russ. J. Electrochem., 2015, vol. 51, no. 2, p. 103.

    Article  Google Scholar 

  26. Bogdanovskaya, V.A., Radina, M.V., Lozova, O.V., et al., Al’tern. Energ. Ekol., 2012, no. 2, p. 91.

    Google Scholar 

  27. Korchagin, O.V., Novikov, V.T., Rakov, E.G., Kuznetsov, V.V., and Tarasevich, M.R., Russ. J. Electrochem., 2010, vol. 46, no. 8, p. 882.

    Article  Google Scholar 

  28. Soboleva, T., Zhao, X., Malek, K., et al., Appl. Mater. Interfaces, 2010, vol. 2, p. 375.

    Article  Google Scholar 

  29. Ding, N., Chien, S.W., Hor, T.S.A., et al., J. Mater. Chem. A, 2014, vol. 2, p. 12433.

    Article  Google Scholar 

  30. Yang, X.-H., He, P., and Xia, Y.-Y., Electrochem. Comm., 2009, vol. 11, p. 1127.

    Article  Google Scholar 

  31. ASTM E1064–12: Standard test method for water in organic liquids by coulometric Karl Fischer titration. http://www.astm.org/Standards/E1064-RUS.htm.

  32. Zhao, G., Niu, Y., Zhang, L., and Sun, K., J. Power Sources, 2014, vol. 270, p. 386.

    Article  Google Scholar 

  33. Meini, S., Piana, M., Beyer, H., et al., J. Electrochem. Soc., 2012, vol. 159, p. A2135.

    Article  Google Scholar 

  34. Gittleson, F.S., Sekol, R.C., Doubek, G., et al., Phys. Chem. Chem. Phys., 2014, vol. 16, p. 3230.

    Article  Google Scholar 

  35. Xu, D., Wang, Z.-L., Xu, J.-J., et al., Chem. Comm., 2012, vol. 48, p. 6948.

    Article  Google Scholar 

  36. Visco, S.J., Nimon, V., Petrov, A., et al., Lithium Air Batteries Based on Protected Lithium Electrodes in The Lithium Air Battery: Fundamentals, New York: Springer-Verlag, 2014, p. 179.

    Google Scholar 

  37. Johnson, L., Li, C., Liu, Z., et al., Nat. Chem., 2014, vol. 6, p. 1091.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Bogdanovskaya.

Additional information

Original Russian Text © O.V. Korchagin, M.R. Tarasevich, O.V. Tripachev, V.A. Bogdanovskaya, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 4, pp. 345–353.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korchagin, O.V., Tarasevich, M.R., Tripachev, O.V. et al. Catalysis of oxygen reaction on positive electrode of a lithium–oxygen cell in the presence of metallic nanosystems. Prot Met Phys Chem Surf 52, 581–589 (2016). https://doi.org/10.1134/S2070205116020143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116020143

Navigation