Skip to main content
Log in

Synthesis of exfoliated graphite and its use as an electrode in supercapacitors

  • New Substances, Materials, and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

In this work, the effect of the synthesis conditions on exfoliated graphite and its properties was investigated. Exfoliated graphite was obtained via thermal reduction of graphite oxide at temperatures of 250–350°C. The influence of the synthesis conditions (temperature and heating rate) on the properties of exfoliated graphite (product yield, bulk density, specific surface area, specific capacitance and others) was determined via direct experimental design method. The ability to use exfoliated graphite in supercapacitors was determined on the basis of the specific capacitance data. The highest specific capacitance of exfoliated graphite was found to be 129 F/g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim, A.K. and Novoselov, K.S., Nat. Mater., 2007, vol. 6, p. 183.

    Article  Google Scholar 

  2. Cai, D. and Song, M., J. Mater. Chem., 2007, vol. 17, p. 3678.

    Article  Google Scholar 

  3. Becerril, H.A., Mao, J., Liu, Z., et al., ACS Nano, 2008, vol. 2, p. 463.

    Article  Google Scholar 

  4. Szabó, T., Tombácz, E., Illés, E., et al., Carbon, 2006, vol. 44, p. 537.

    Article  Google Scholar 

  5. Chung, D.D.L., J. Mater. Sci., 1987, vol. 22, p. 4190.

    Article  Google Scholar 

  6. Cao, H., Ma, E., Wang, X., et al., Acta Geol. Sin., 2006, vol. 80, p. 285.

    Google Scholar 

  7. Ulanov, G.A., Avdeev, V.V., Serebryannikov, N.I., et al., RF Patent 2177092.

  8. Godunov, I.A., Avdeev, V.V., Kuznetsov, N.G., et al., RF Patent 2130953.

  9. Liu, Z., Liu, J., Cui, L., et al., Carbon, 2013, vol. 51, p. 148.

    Article  Google Scholar 

  10. Mitra, S., Lokesh, K.S., and Sampath, S., J. Power Sources, 2008, vol. 185, p. 1544.

    Article  Google Scholar 

  11. Wang, H., Liu, Z., Chen, X., et al., J. Solid State Electrochem., 2011, vol. 15, p. 1179.

    Article  Google Scholar 

  12. Afanasov, I.M., Morozov, V.A., Kepman, A.V., et al., Carbon, 2009, vol. 47, p. 263.

    Article  Google Scholar 

  13. Afanasov, I.M., Shornikova, O.N., Vlasov, I.I. Kogan, E.V., Seleznev, A.N., and Avdeev, V.V., Inorg. Mater., 2009, vol. 45, No. 2, p. 135.

    Article  Google Scholar 

  14. Zhang, C., Lv, W., Xie, X., et al., Carbon, 2013, vol. 62, p. 11.

    Article  Google Scholar 

  15. Stankovich, S., Dikin, D.A., Dommett, G.H.B., et al., Nature, 2006, vol. 442, p. 282.

    Article  Google Scholar 

  16. Wu, Z.S., Ren, W.C., Gao, L.B., et al., ACS Nano, 2009, vol. 3, p. 411.

    Article  Google Scholar 

  17. Stankovich, S., Dikin, D.A., Piner, R.D., et al., Carbon, 2007, vol. 45, p. 1558.

    Article  Google Scholar 

  18. Bannov, A.G., Timofeeva, A.A., Shinkarev, V.V., et al., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 183.

    Article  Google Scholar 

  19. Saidaminov, M.I., Maksimova, N.V., Sorokina, N.E., et al., Inorg. Mater., 2013, vol. 49, p. 883.

    Article  Google Scholar 

  20. Zhang, H.-B., Wang, J.-W., Yan, Q., et al., J. Mater. Chem., 2011, vol. 21, p. 5392.

    Article  Google Scholar 

  21. Li, D. and Kaner, R.B., Science, 2008, vol. 320, p. 1170.

    Article  Google Scholar 

  22. Adler, Yu.P., Markova, E.V., and Granovskii, Yu.V., Planirovanie eksperimenta pri poiske optimal’nykh uslovii (Experiment Planning for Optimization of Conditions), Moscow: Nauka, 1976, p. 280.

    Google Scholar 

  23. Uvarov, N.F., Mateyshina, Yu.G., Ulihin, A.S., et al., ECS Trans., 2010, vol. 25, p. 11.

    Article  Google Scholar 

  24. Rychagov, A.Yu., Urisson, N.A., and Vol’fkovich, Yu.M., Russ. J. Electrochem., 2001, vol. 37, No. 11, p. 1172.

    Article  Google Scholar 

  25. Shukla, A.K., Banerjee, A., Ravikumar, M.K., et al., Electrochim. Acta, 2012, vol. 84, p. 165.

    Article  Google Scholar 

  26. Liu, P., Gong, K., Xiao, P., et al., J. Mater. Chem., 2000, vol. 10, p. 933.

    Article  Google Scholar 

  27. Glover, J., Cai, M., Overdeep, K.R., et al., Macromolecules, 2011, vol. 44, p. 9821.

    Article  Google Scholar 

  28. Haubner, K., Morawski, J., Olk, P., et al., Chem. Phys. Chem., 2010, vol. 11, p. 2131.

    Google Scholar 

  29. McAllister, M.J., Li, J.L., Adamson, D.H., et al., Chem. Mater., 2007, vol. 19, p. 4396.

    Article  Google Scholar 

  30. Chen, P. and Chung, D.D.L., Carbon, 2013, vol. 61, p. 305.

    Article  Google Scholar 

  31. Zhang, H., Ye, J., Ye, Y., et al., Electrochim. Acta, 2014, vol. 138, p. 311.

    Article  Google Scholar 

  32. Chen, Y., Zhang, X., Zhang, D., et al., Carbon, 2011, vol. 49, p. 573.

    Article  Google Scholar 

  33. Tarasevich, M.R., Elektrokhimiya uglerodnykh materialov (Electrochemistry of Carbon Materials), Moscow: Nauka, 1984, p. 253.

    Google Scholar 

  34. Rychagov, A.Yu. and Volfkovich, Yu.M., Russ. J. Electrochem., 2007, vol. 43, No. 11, p. 1273.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Bannov.

Additional information

Original Russian Text © A.G. Bannov, S.I. Yusin, A.A. Timofeeva, K.D. Dyukova, A.V. Ukhina, E.A. Maksimovskii, M.V. Popov, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 4, pp. 399–406.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannov, A.G., Yusin, S.I., Timofeeva, A.A. et al. Synthesis of exfoliated graphite and its use as an electrode in supercapacitors. Prot Met Phys Chem Surf 52, 645–652 (2016). https://doi.org/10.1134/S2070205116020040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116020040

Navigation