Skip to main content
Log in

Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin–Astakhov equation

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Temperature dependences of parameters n and E are calculated according to the adsorption equation of Dubinin–Astakhov for methane adsorption on eight active carbons in the range of supercritical temperatures of 170–340 K and pressures of 0–20 MPa. At temperatures above ~240 K, characteristic adsorption energy E of methane grows linearly at an increase in temperature. The temperature coefficients of characteristic energy of methane adsorption on active carbon tend to decrease at an increase in standard characteristic adsorption energy E 0. The average value of parameter <n> for the studied adsorbents tends to grow at an increase in standard characteristic adsorption energy E 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chkhaidze, E.V., Fomkin, A.A., Serpinskii, V.V., et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1988, p. 2640.

    Google Scholar 

  2. Myers, A.L. and Monson, P.A., Langmuir, 2002, vol. 18, p. 10261.

    Article  Google Scholar 

  3. Herbst, A. and Harting, P., Adsorption, 2002, vol. 8, p. 111.

    Article  Google Scholar 

  4. Li, M., et al., J. Chem. Eng. Data, 2004, vol. 49, p. 73.

    Article  Google Scholar 

  5. Bastos-Neto, M., et al., Adsorption, 2005, vol. 11, p. 911.

    Article  Google Scholar 

  6. Himeno, S., Komatsu, T., and Fujita, S., J. Chem. Eng., 2005, vol. 50, p. 369.

    Google Scholar 

  7. Goetz, V., Pupier, O., and Guillot, A., Adsorption, 2006, vol. 12, p. 55.

    Article  Google Scholar 

  8. Shkolin, A.V., Fomkin, A.A., and Yakovlev, V.Yu., Russ. Chem. Bull., 2007, vol. 56, no. 3, p. 393.

    Article  Google Scholar 

  9. Shkolin, A.V., Fomkin, A.A., and Sinitsyn, V.A., Colloid J., 2008, vol. 70, no. 6, p. 796.

    Article  Google Scholar 

  10. Fomkin, A.A., Adsorption, 2005, vol. 11, p. 425.

    Article  Google Scholar 

  11. Kuznetsova, T.A., Godovikov, I.A., and Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2012, vol. 48, no. 4, p. 424.

    Article  Google Scholar 

  12. Tolmachev, A.M., Kryuchenkova, N.G., Anuchin, K.M., Bibin, A.V., and Fomkin, A.A., Colloid J., 2012, vol. 74, no. 3, p. 366.

    Article  Google Scholar 

  13. Strizhenov, E.M., Shkolin, A.V., Fomkin, A.A., et al., Prot. Met. Phys. Chem. Surf, 2013, vol. 49, no. 5, p. 521.

    Article  Google Scholar 

  14. Anuchin, K.M., Fomkin, A.A., Korotych, A.P., and Tolmachev, A.M., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 2, p. 173.

    Article  Google Scholar 

  15. Strizhenov, E.M., Shkolin, A.V., Fomkin, A.A., et al., Khim. Tekhnol., 2013, vol. 14, no. 12, p. 729.

    Google Scholar 

  16. Strizhenov, E.M., Shkolin, A.V., Fomkin, A.A., et al., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, p. 15.

    Article  Google Scholar 

  17. Shkolin, A.V., Fomkin, A.A., Strizhenov, E.M., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2014, vol. 50, no. 3, p. 279.

    Article  Google Scholar 

  18. Eddaoudi, M., Kim, J. et al., Science, 2002, vol. 295, p. 469.

    Article  Google Scholar 

  19. Furukawa, H. and Yaghi, O.M., J. Am. Chem. Soc., 2009, vol. 131, p. 8875.

    Article  Google Scholar 

  20. Wilmer, C.E., Farha, O.K., et al., Energy Environ. Sci., 2013, vol. 6, p. 1158.

    Article  Google Scholar 

  21. Fomkin, A.A. and Sinitsin, V.A., Prot. Met., 2008, vol. 44, no. 1, p. 150.

    Article  Google Scholar 

  22. Dubinin, M.M., Kadlets, O., and Serpinskii, V.V., Izv. Akad. Nauk SSSR, Ser. Khim., 1984, p. 502.

    Google Scholar 

  23. Himeno, S., Komatsu, T., and Fujita, S., J. Chem. Eng., 2005, vol. 50, p. 369.

    Google Scholar 

  24. Goetz, V., Pupier, O., and Guillot, A., Adsorption, 2006, vol. 12, p. 55.

    Article  Google Scholar 

  25. Shkolin, A.V., Fomkin, A.A., and Yakovlev, V.Yu., Russ. Chem. Bull., 2007, vol. 56, no. 3, p. 393.

    Article  Google Scholar 

  26. Dubinin, M.M., Adsorbtsiya i poristost’ (Adsorption and Porosity), Moscow: Voen. Akad. Khim. Zashch., 1972.

    Google Scholar 

  27. Dubinin, M.M., Adsorbtsiya v mikroporakh (Adsorption in Micropores), Moscow: Nauka, 1983, p. 186.

    Google Scholar 

  28. Men’shchikov, I.E., Fomkin, A.A., Tsivadze, A.Yu., Shkolin, A.V., Strizhenov, E.M., and Pulin, A.L., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 4, p. 493.

    Article  Google Scholar 

  29. Tolmachev, A.M., Kuznetsova, T.A., and Godovikov, I.A., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 3, p. 281.

    Article  Google Scholar 

  30. Sychev, V.V., Vasserman, A.A., Zagoruchenko, V.A., et al., Termodinamicheskie svoistva metana (Thermodynamic Properties of Methane), Moscow: Izd. Standartov, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Men’shchikov.

Additional information

Original Russian Text © I.E. Men’shchikov, A.A. Fomkin, A.B. Arabei, A.V. Shkolin, E.M. Strizhenov, 2016, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2016, Vol. 52, No. 4, pp. 339–344.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Men’shchikov, I.E., Fomkin, A.A., Arabei, A.B. et al. Description of methane adsorption on microporous carbon adsorbents on the range of supercritical temperatures on the basis of the Dubinin–Astakhov equation. Prot Met Phys Chem Surf 52, 575–580 (2016). https://doi.org/10.1134/S2070205116010160

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205116010160

Navigation