Skip to main content
Log in

Protection of steel in solutions of mineral acids using α,β-unsaturated aldehydes, ketones, and azomethines

  • Corrosion Inhibitors
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The current state of research in the field of inhibitory protection of metals from corrosion in solutions of mineral acids using α,β-unsaturated carbonyl compounds and azomethines has been considered. Literary data on protection of various steels in solutions of acids using these substances have been summarized, and features of the mechanism of their protective action have been discussed. The possibility of steel protection in hydrochloric acid by the considered compounds and compositions based on them in the conditions of high-temperature corrosion has been noted. It has been shown that the mechanism of the inhibitory action of α,β-unsaturated aldehydes, ketones, and azomethines is based on their ability to form a protective film of polymer on the metal surface. The low inhibitory efficiency of the considered compounds on steels in sulfateacid media is a consequence of their participation in electrode reactions of metal as depolarizator and complexing agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Glushchenko, V.N. and Silin, M.A., Neftepromyslovaya khimiya. Tom 4. Kislotnaya obrabotka skvazhin (Oilfield Chemistry, Vol. 4: Acid Treatment of Wells), Mishchenko, I.T., Ed., Moscow: Nauka, 2010.

  2. Growe, C., Masmonteil, J., Touboul, E., and Thomas, R., Oilfield Rev., 1992, vol. 25, no. 2, pp. 24–40.

    Google Scholar 

  3. Podobaev, N.I. and Avdeev, Ya.G., Prot. Met. Phys. Chem. Surf., 2004, vol. 40, no. 1, pp. 7–13.

    Google Scholar 

  4. Avdeev, Y.G., Korroz.: Mater., Zashch., 2006, no. 1, pp. 18–24.

    Google Scholar 

  5. Avdeev, Y.G. and Kuznetsov, Y.I., Russ. Chem. Rev., 2012, vol. 81, no. 12, pp. 1133–1145.

    Article  Google Scholar 

  6. Frenier, W.W. and Hill, D.G., in Reviews on Corrosion Inhibitor Science and Technology, Raman, A., Labine, P., and Quraishi, M.A., Eds., Houston, TX: NACE Int., 2004, vol. 3, pp. 6-1–6-40.

  7. Altsybeeva, A.I. and Levin, Z.S., Ingibitory korrozii metallov: spravochnik (Inhibitors of Metal Corrosion: Handbook), Antropov, L.I., Ed., Leningrad: Khimiya, 1968, pp. 49–53.

  8. Kurbanov, F.K. and Islhakov, A.K., Zashch. Met., 1982, vol. 18, no. 1, pp. 103–105.

    Google Scholar 

  9. Avdeev, Y.G., Kuznetsov, Yu.I., and Larionova, V.M., Korroz.: Mater., Zashch., 2010, no. 10, pp. 31–41.

    Google Scholar 

  10. Avdeev, Ya.G., Kuznetsov, Yu.I., and Buryak, A.K., Corros. Sci., 2013, vol. 69, pp. 50–60.

    Article  Google Scholar 

  11. Growcock, F.B. and Frenier, W.W., J. Electrochem. Soc., 1988, vol. 135, no. 4, pp. 817–822.

    Article  Google Scholar 

  12. Avdeev, Ya.G., Luchkin, A.Yu., Kuznetsov, Yu.I., Gorichev, I.G., and Tyurina, M.V., Korroz.: Mater., Zashch., 2011, no. 10, pp. 26–31.

    Google Scholar 

  13. Beloglazov, S.M., Navodorozhivanie stali pri elektrokhimicheskikh protsessakh (Steel Hydrogenation in Electrochemical Processes), Leningrad: Leningr. Gos. Univ., 1975.

    Google Scholar 

  14. Growcock, F.B., Corrosion, 1989, vol. 45, no. 12, pp. 1003–1007.

    Article  Google Scholar 

  15. Growcock, F.B., Frenier, W.W., and Andreozz, P.A., Corrosion, 1989, vol. 45, no. 12, pp. 1007–1015.

    Article  Google Scholar 

  16. Zucchi, F., Trabanelli, G., and Brunoro, G., Corros. Sci., 1994, vol. 36, pp. 1683–1690.

    Article  Google Scholar 

  17. Zhou, X., He, X.-Yi., Wu, Yu.-H., and Cai, D.-Ch., J. Xihua Teachers Coll., Nat. Sci., 2003, no. 4, pp. 434–436.

    Google Scholar 

  18. Foroulis, Z.A., US Patent 3589860, 1971.

    Google Scholar 

  19. Jiancun, G., Yongji, W., Li, F., and Hong, Y., Petrol. Sci., 2009, vol. 6, pp. 201–207.

    Article  Google Scholar 

  20. Fouda, A.S., Elmorsi, M.A., and Elmekkawy, A., Afr. J. Pure Appl. Chem., 2013, vol. 7, no. 10, pp. 337–349.

    Google Scholar 

  21. Frenier, W.W., Growcock, F.B., and Lopp, V.R., Corrosion, 1988, vol. 44, no. 9, pp. 590–598.

    Article  Google Scholar 

  22. Growcock, F.B., Corrosion, 1989, vol. 45, no. 5, pp. 393–401.

    Article  Google Scholar 

  23. Quraishi, M.A., Sardar, N., and Ali, H., Corrosion, 2002, vol. 58, no. 4, pp. 317–321.

    Article  Google Scholar 

  24. Saratha, R. and Meenakshi, R., Rasayan J. Chem., 2011, vol. 4, no. 2, pp. 251–263.

    Google Scholar 

  25. Sathiya, P.A.R., Muralidharan, S., Velmurugan, S., and Venkatachari, G., Mater. Chem. Phys., 2008, vol. 110, pp. 269–275.

    Article  Google Scholar 

  26. Podobaev, N.I. and Vasil’ev, V.V., in Ingibitory korrozii metallov (Inhibitors of Metal Corrosion), Moscow: Mosk. Gos. Pedagog. Inst. im. V.I. Lenina, 1969, no. 3, pp. 72–82.

    Google Scholar 

  27. Frenier, W.W. and Growcock, F.B., US Patent 4734259, 1988.

    Google Scholar 

  28. Vorderbruggen, M.A. and Williams, D.A., US Patent 6177364, 2000.

    Google Scholar 

  29. Cassidy, J.M., Kiser, Ch.E., and Lane, J.L., US Patent 7994101, 2011.

    Google Scholar 

  30. Cassidy, J.M., Kiser, Ch.E., and Lane, J.L., US Patent 7902124, 2011.

    Google Scholar 

  31. Cabello, G., Funkhouser, G.P., Cassidy, J., Kiser, Ch.E., Lane, J., and Cuesta, A., Electrochim. Acta, 2013, vol. 97, pp. 1–9.

    Article  Google Scholar 

  32. Da Silva, A. B., D’Elia, E., and Da Cunha Ponciano Gomes, J.A., Corros. Sci., 2010, vol. 52, pp. 788–793.

    Article  Google Scholar 

  33. Vagapov, R.K., Kuznetsov, Yu.I., and Agafonkin, A.V., Korroz.: Mater., Zashch., 2013, no. 4, pp. 37–46.

    Google Scholar 

  34. Avdeev, Ya.G., Kuznetsov, Yu.I., and Belinskii, P.A., Korroz.: Mater., Zashch., 2009, no. 11, pp. 20–26.

    Google Scholar 

  35. Upadhiai, Z.K., Antoni, Sh., and Matur, S.P., Elektrokhimiya, 2007, vol. 43, no. 2, pp. 252–256.

    Google Scholar 

  36. Mohammed, M.Q., J. Basrah Res. Sci., A, 2011, vol. 37, no. 4, pp. 116–130.

    Google Scholar 

  37. Solmaz, R., Corros. Sci., 2010, vol. 52, pp. 3321–3330.

    Article  Google Scholar 

  38. Keles, H. and Keles, M., in Research on Chemical Intermediates, 2012, no. 12, pp. 1–17.

    Google Scholar 

  39. Quraishi, M.A., Ahmad, S., and Venkatachari, G., Bull. Electrochem., 2002, vol. 18, no. 9, pp. 399–402.

    Google Scholar 

  40. Sathiya Priya, A.R., Muralidharan, V.S., and Subramania, A., Corrosion, 2008, vol. 64, no. 6, pp. 541–552.

    Article  Google Scholar 

  41. Quraishi, M.A. and Jamal, D., Corrosion, 2000, vol. 56, no. 2, pp. 156–160.

    Article  Google Scholar 

  42. Quraishi, M.A. and Jamal, D., Corrosion, 2000, vol. 56, no. 10, pp. 983–985.

    Article  Google Scholar 

  43. Aytac, A., Cu(II), Co(II), and Ni(II) complexes of–Br and–OCH2CH3 substituted Schiff bases as corrosion inhibitors for aluminum in acidic media, in Proc. EUROCORR 2010, Moscow, 2010, no. 9147.

    Google Scholar 

  44. Grigor’ev, V.P., Belousova, N.A., Plekhanova, E.V., and Burlov, A.S., in Mater. mezhd. konf. “Protivokorozionnaya zashchita–klyuch k energeticheskoi i ekologicheskoi bezopasnosti,” Moskva, 3–5 dekabrya 2013 (Proc. Int. Conf. “Anti-Corrosion Protection is a Key to Energetic and Environmental Safety,” Moscow, December 3–5, 2013), Moscow: Ross. Gos. Univ. Nefti Gaza im. I.M. Gubkina, 2013.

    Google Scholar 

  45. Avdeev, Ya.G. and Kuznetsov, Yu.I., Korroz.: Mater., Zashch., 2009, no. 12, pp. 4–11.

    Google Scholar 

  46. Khamis, E., Ameer, M.A., Al-Andis, N.M., and Al-Senani, G., Corrosion, 2000, vol. 56, no. 2, pp. 127–138.

    Article  Google Scholar 

  47. Li, X., Deng, S., Fu, H., and Muc, G., Corros. Sci., 2009, vol. 51, pp. 2639–2651.

    Article  Google Scholar 

  48. Li, X., Deng, S., and Fu, H., Progr. Org. Coat., 2010, vol. 67, pp. 420–426

    Article  Google Scholar 

  49. Grigor’ev, V.P. and Ekilik, V.V., Khimicheskaya struktura i zashchitnoe deistvie ingibitorov korrozii (Chemical Structure and Protective Activity of Inhibitors Against Corrosion), Rostov-on-Don: Rostov. Gos. Univ., 1978, pp. 61–64.

    Google Scholar 

  50. Emregul, K.C., Duzgun, E., and Atakol, O., Corros. Sci., 2006, vol. 48, pp. 3243–3260.

    Article  Google Scholar 

  51. Emregul, K.C., Kurtaran, R., and Atakol, O., Corros. Sci., 2003, vol. 45, pp. 2803–2817.

    Article  Google Scholar 

  52. Behpour, M., Ghoreishi, S.M., Soltani, N., Salavati-Niasari, M., Hamadanian, M., and Gandomi, A., Corros. Sci., 2008, vol. 50, pp. 2172–2181.

    Article  Google Scholar 

  53. Lece, H.D., Emregul, K.C., and Atakol, O., Corros. Sci., 2008, vol. 50, no. 5, pp. 1460–1468.

    Article  Google Scholar 

  54. Hosseini, S.M.A. and Azimi, A., Mater. Corros., 2008, vol. 59, pp. 41–49.

    Article  Google Scholar 

  55. Hosseini, M.G., Ehteshamzadeh, M., and Shahrabi, T., Electrochim. Acta, 2007, vol. 52, pp. 3680–3685.

    Article  Google Scholar 

  56. Ehteshamzade, M., Shahrabi, T., and Hosseini, G.M., Anti-Corros. Methods Mater., 2006, vol. 53, pp. 147–152.

    Article  Google Scholar 

  57. Chitra, S., Parameswari, K., and Selvaraj, A., Int. J. Electrochem. Sci., 2010, vol. 5, pp. 1675–1697.

    Google Scholar 

  58. Bilgic, S. and Caliskan, N., J. Appl. Electrochem., 2001, vol. 31, pp. 79–83.

    Article  Google Scholar 

  59. Yurt, A., Bereket, G., Kivrak, A., Balaban, A., and Erk, B., J. Appl. Electrochem., 2005, vol. 35, pp. 1025–1032.

    Article  Google Scholar 

  60. Toliwal, S.D., Kalpesh, J., and Pavagadhi, T., J. Appl. Chem. Res., 2010, vol. 12, pp. 24–36.

    Google Scholar 

  61. Growcock, F.B. and Lopp, V.R., Corrosion, 1988, vol. 44, no. 4, pp. 248–254.

    Article  Google Scholar 

  62. Growcock, F.B., Lopp, V.R., and Jasinski, R.J., J. Electrochem. Soc., 1988, vol. 135, no. 4, pp. 823–827.

    Article  Google Scholar 

  63. Avdeev, Ya.G. and Buryak, A.K., Korroz.: Mater., Zashch., 2011, no. 6, pp. 27–31.

    Google Scholar 

  64. Frenier, W.W. and Growcock, F.B., in Reviews on Corrosion Inhibitor Science and Technology, Raman, A. and Labine, P., Ed., Houston, Texas: NACE Int., 1993, pp. II 20–1–II 20–29.

  65. Comprehensive Organic Chemistry, Vol. 1: Stereochemistry, Hydrocarbons, Halo Compounds, Barton, D. and Ollis, W.D., Eds., Oxford, UK: Pergamon, 1979.

  66. The Chemistry of Alkenes, Patai, S., Ed., New York: Wiley, 1964.

  67. Avdeev, Ya.G. and Podobaev, N.I., Prot. Met. Phys. Chem. Surf., 2005, vol. 41, no. 6, pp. 592–596.

    Google Scholar 

  68. Avdeev, Ya.G., Luchkin, A.Yu., Kuznetsov, Yu.I., Gorichev, I.G., and Tyurina, M.V., Korroz.: Mater., Zashch., 2011, no. 8, pp. 20–26.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. G. Avdeev.

Additional information

Original Russian Text © Ya.G. Avdeev, 2014, published in Korroziya: Materialy, Zashchita, 2014, No. 6, pp. 27–35.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, Y.G. Protection of steel in solutions of mineral acids using α,β-unsaturated aldehydes, ketones, and azomethines. Prot Met Phys Chem Surf 51, 1140–1148 (2015). https://doi.org/10.1134/S2070205115070023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115070023

Keywords

Navigation