Skip to main content
Log in

Effect of calcination on nanoscale zirconia produced by high temperature hydrolysis

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Acidic and ammoniacal zirconium chloride solutions were subjected to high temperature hydrolysis (HTH) at temperatures between 110 and 150°C. The precipitates obtained from ammoniacal solutions were identified as monoclinic zirconia of Baddeleyite type as dried at room temperature (RT). Their lattice parameters varied between 5.004 and 5.493 Angstrom (Å), and crystallite size between 0.99 and 1.58 nm. The BET specific surface area of the dry powder was measured between 144 and 183 m2/g, corresponding to the equivalent particle diameter of 6.94 and 5.37 nm, respectively. Analysis carried out using field emission scanning electron microscope (FESEM) indicated that the size of zirconia particles ranged between 20 and 220 nm. Calcination of zirconia precipitates at 800°C for 2 hours (h) in air increased the crystallinity and crystal size of the precipitate, and affected the monoclinic crystal structure. It was also observed that the monoclinic crystal structure partially transformed into cubic and tetragonal zirconia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Saricimen, H., PhD Thesis, London: London Univ., 1972.

    Google Scholar 

  2. Raming, T.P., PhD Thesis, Enschede, Netherlands: Univ. of Twente, 2000.

    Google Scholar 

  3. Piticescu, R.M., Piticescu, F.R., Toloi, D., and Badilita, V., Nanotechnology, 2003, vol. 14, p. 312.

    Article  Google Scholar 

  4. Adamski, A., Jakubus, P., and Sojka, Z., Nukleonika, 2006, vol. 51, suppl. 1, p. 27.

    Google Scholar 

  5. Santos, V., Zeni, M., Bergmann, C., and Hohemberger, J., Rev. Adv. Mater. Sci., 2008, vol. 17, p. 62.

    Google Scholar 

  6. Viazzi, C., Bonino, J.P., and Ansart, F., Surf. Coat. Technol., 2006, vol. 201, p. 3889.

    Article  Google Scholar 

  7. Segal, D., Chemical Synthesis of Advanced Ceramic Nanomaterials, Cambridge: Cambridge Univ. Press, 1989.

    Book  Google Scholar 

  8. Bokhimi, X., Morales, A., Portilla, M., and GarciaRuiz, A., Nanostruct. Mater., 1999, vol. 12, p. 589.

    Article  Google Scholar 

  9. Lee, J.H., Yoon, S.M., Kim, B.K. et al., Solid State Ionics, 2001, vol. 144, p. 175.

    Article  Google Scholar 

  10. Baumard, J.F. and Abelard, P., in Advances in Ceramics. Science and Technology of Zirconium, Claussen, N., Ruehle, M., and Heuer, A., Ed., Columbus, OH: Am. Ceram. Soc., 1983, vol. 12, p. 555.

    Google Scholar 

  11. Dudek, M. and Molenda, J., Mater. Sci. Pol., 2006, vol. 24, p. 45.

    Google Scholar 

  12. Lee, J.H., Kim, J., Kim, S.W., et al., Solid State Ionics, 2004, vol. 166, p. 45.

    Article  Google Scholar 

  13. Omata, T., Goto, Y., and Otsuka-Yao-Matsuo, S., Sci. Technol. Adv. Mater., 2007, vol. 8, p. 524.

    Article  Google Scholar 

  14. Masui, T., Ozaki, T., Machida, K.-I., and Adachi, G.-Y., J. Alloys Compd., 2000, vols. 303–304, p. 49.

    Article  Google Scholar 

  15. Taylor, K.C., in Catalysis–Science and Technology, Anderson, J. and Boudert, M., Ed., Berlin: SpringerVerlag, 1984, vol. 5.

  16. Nakano, K., Masui, T., and Adachi, G., J. Alloys Compd., 2002, vol. 344, p. 342.

    Article  Google Scholar 

  17. Suzuki, T., Morikawa, A., Suda, H., et al., R&D Rev. Toyota CRDL, 2002, vol. 37, p. 28.

    Google Scholar 

  18. Minamia, K., Masui, T., Imanaka, L. et al., J. Alloys Compd., 2006, vols. 408–412, p. 1132.

    Article  Google Scholar 

  19. Rezaei, M., Alavi, S.M., and Sahebdelfar, S., Mater. Lett., 2007, vol. 61, p. 2628.

    Article  Google Scholar 

  20. Bellido, J.D.A. and Assaf, E.M., J. Power Sources, 2008, vol. 177, p. 24.

    Article  Google Scholar 

  21. Rezaei, M., Alavi, S.M., Sahebdelfar, S. et al., Appl. Catal., B, 2008, vol. 77, p. 346.

    Article  Google Scholar 

  22. Song, R., Gaffney, A.M., Yeh, C.Y., and Angevine, P.J., USPTO Application 2009.

    Google Scholar 

  23. Pourbaix, M., Atlas of Electrochemical Equilibria in Aqueous Solutions, London: Pergamon, 1966.

    Google Scholar 

  24. Maraghini, M., Deltombe, E., De Zoubov, N., et al., in NACE International Cebelcor, Houston, TX, 1974.

    Google Scholar 

  25. Alexander, G.B. and Bugosh, J., US Patent 2984576, 1956.

    Google Scholar 

  26. Scott, T.R., Unit Processes in Hydrometallurgy, Wandworth, M.E. and Davie, F.T., Eds., New York: Gordon and Breach, 1964.

  27. Stambaugh, E.P., Battelle Tech. Rev., 1968, vol. 17.

  28. Kohman, G.T., The Art and Science of Growing Crystals, Gilman, J.J., Ed., New York: Wiley, 1963, p. 152.

  29. Dell’Agli, G. and Mascolo, G., Mater. Sci. Pol., 2001, vol. 26, p. 403.

    Google Scholar 

  30. Pyda, W., Mater. Sci. Pol., 2008, vol. 26, p. 403.

    Google Scholar 

  31. Leonelli, C., Corradi, A., @ojkowski, W., and Pielaszek, R., in Symp. E-MRS Fall Meeting, September 17–21, 2007, Warsaw: Warsaw Univ. of Technol., 2007.

    Google Scholar 

  32. Dell’Agl, G. and Mascolo, G., Solid State Ionics, 2003, vol. 160, p. 363.

    Article  Google Scholar 

  33. Anderson, R.C., High Temperature Oxides, Alper, M.A., Ed., New York: Academic, 1970, p. 1.

  34. Garvie, R.C., High Temperature Oxides, Alper, M.A., Ed., New York: Academic, 1970, p. 11.

  35. Alexander, G.B. and Bugosh, J., US Patent 2984628, 1956.

    Google Scholar 

  36. Cristea, L., Piticescu, R.R., and Popescu, B., Metalurgija, 2003, vol. 42, p. 99.

    Google Scholar 

  37. Yu, S., Jiang, P., Dong, Y., et al., Bull. Korean Chem. Soc., 2012, vol. 33, p. 524.

    Article  Google Scholar 

  38. Akbari, B., Pirhadi Tavandashti, M., and Zandrahimi, M., Iran. J. Mater. Sci. Eng., 2011, vol. 8, p. 48.

    Google Scholar 

  39. Vogel, A.I., A Textbook of Quantitative Inorganic Analysis, London: Longmans, 1961, 3d ed.

    Google Scholar 

  40. Ray, J.C., Pati, R.K., and Pramanik P., J. Eur. Ceramic Soc., 2000, vol. 20, p. 1289.

    Article  Google Scholar 

  41. Ray, J.C., Park, D.-W., and Ahn, W.-S., J. Ind. Eng. Chem., 2006, vol. 12, p. 142.

    Google Scholar 

  42. Khorramie, S.A., Baghchesara, M.A., Lotfi, R., and Moradi Dehagi, Sh., Int. J. Nano Dimens., 2012, vol. 2, p. 261.

    Google Scholar 

  43. Siddiqui, M.R.H., Al-Wassil, A.I., Al-Otaibi, A.M., and Mahfouz, R.M., Mater. Res., 2012, vol. 15, p. 986.

    Article  Google Scholar 

  44. Salavati-Niasari, M., Dadkhah, M., Nourani, M.R., and Fazl, A.A., J. Cluster Sci., 2012, vol. 23, no. 4, p. 1011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Quddus.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saricimen, H., Ul-Hamid, A. & Quddus, A. Effect of calcination on nanoscale zirconia produced by high temperature hydrolysis. Prot Met Phys Chem Surf 51, 803–811 (2015). https://doi.org/10.1134/S2070205115050214

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205115050214

Keywords

Navigation