Advertisement

Experimental and theoretical studies of (E)-N′-1-(4-propylbenzylidene)nicotinohydrazide as corrosion inhibitor of mild steel in 1 M HCl

  • P. A. L. Anawe
  • C. U. Obi
  • S. S. Mehdi
  • K. O. Ogunniran
  • B. I. Ita
  • C. O. Ehi-EromoseleEmail author
Physicochemical Problems of Materials Protection

Abstract

The efficiency of a novel Schiff base namely (E)-N′-1-(4-propylbenzylidene)nicotinohydrazide (PBNH) was investigated as corrosion inhibitor of mild steel (MS) in 1M HCl using weight loss technique at 303 and 313 K. It was established that corrosion rate of mild steel increases with increase in temperature and concentration of HCl. Results showed that PBNH considerably inhibited the corrosion of mild steel in a 1 M HCl solution and inhibition efficiency is about 70% at 4 × 10−4 M PBNH at both temperatures. The inhibition efficiency of PBNH increased with an increase in concentration and temperature. The adsorption model obeys the Langmuir adsorption isotherm and the kinetic-thermodynamic model and the value of free energy of adsorption, ΔG ads indicated that the adsorption of PBNH was a spontaneous process and was both an electrostatic-adsorption (physisorption) and adsorption on the basis of donor-acceptor interactions (chemisorption). Thermodynamic parameters calculated show the spontaneity and endothermic nature of the process and also reveal the favourable affinity of PBNH towards the mild steel surface. Quantum chemical calculations based on PM3 method was performed on PBNH and calculated parameters gave useful information to explain the interaction between the surface of metal and PBNH.

Keywords

Corrosion Rate Mild Steel Inhibition Efficiency Corrosion Inhibitor Mild Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achebe, C.H., Nneke, U.C., and Anisiji, O.E., Proceedings International MultiConference of Engineers and Computer Scientists, 2012, vol. 2, p. 1.Google Scholar
  2. 2.
    Moretti, G., Guidi, F., and Fabris, F., Corros. Sci., 2013, vol. 76, p. 212.Google Scholar
  3. 3.
    Lagrenée, M., Mernari, B., Bouanis, M., et al., Corros. Sci., 2002, vol. 44, p. 573.CrossRefGoogle Scholar
  4. 4.
    Bommersbach, P., Alemany-Dumont, C., Millet, J.P., et al., Electrochim. Acta, 2005, vol. 51, p. 1076.CrossRefGoogle Scholar
  5. 5.
    Pierre, F., Moinet, C., and Toupet, L., J. Organomet. Chem., 1997, vol. 527, p. 60.Google Scholar
  6. 6.
    Obot, I.B., Obi-Egbedi, N.O., and Umoren, S.A., Corros. Sci., 2009, vol. 51, p. 1868.CrossRefGoogle Scholar
  7. 7.
    Behpour, M., Ghoreishi, S., Mohammadi, N., et al., Corros. Sci., 2010, vol. 52, p. 4046.CrossRefGoogle Scholar
  8. 8.
    Kosari, A., Moayed, M.H., Davoodi, A., et al., Corros. Sci., 2014, vol. 78, p. 145.Google Scholar
  9. 9.
    Jamal Abdul Nasser, A., and Anwar Sathiq, M., Int. J. Eng. Sci. Technol., 2010, vol. 2, p. 6420.Google Scholar
  10. 10.
    Singh, A.K. and Quraishi, M.A., J. Appl. Electrochem., 2010, vol. 40, p. 1297.Google Scholar
  11. 11.
    Jacob, K.S. and Parameswaran, G., Corros. Sci., 2010, vol. 52, p. 224.CrossRefGoogle Scholar
  12. 12.
    Oguzie, E.E., Wang, S.G., Li, Y., et al., J. Phys. Chem., 2009, vol. 113, p. 8424.Google Scholar
  13. 13.
    De Sousa, F.S. and Spinelli, A., Corros. Sci., 2009, vol. 51, p. 645.Google Scholar
  14. 14.
    Antonijevic, M.M. and Petrovic, M.B., Int. J. Electrochem. Sci., 2008, vol. 3, p. 28.Google Scholar
  15. 15.
    Kokalj, A., Peljhan, S.M., Finsgar, I., et al., J. Am. Chem. Soc., 2010, vol. 132, p. 16664.CrossRefGoogle Scholar
  16. 16.
    Abeda, J., Anne, K., Duhme, K., et al., J. Chem. Soc., Dalton Trans., 2012, vol. 41, p. 91.Google Scholar
  17. 17.
    Ita, B.I., Bull. Chem. Soc. Ethiop., 2006, vol. 20, p. 254.CrossRefGoogle Scholar
  18. 18.
    James, S.J.P., J. Comput. Chem., 1989, vol. 10, p. 209.CrossRefGoogle Scholar
  19. 19.
    Okafor, P.C., Ebenso, E.E., and Ekpe, U.J., Bull. Chem. Soc. Ethiop., 2004, vol. 18, p. 181.CrossRefGoogle Scholar
  20. 20.
    Benabdellah, M., Khaled, K.F., and Hammouti, B., Mater. Chem. Phys., 2010, vol. 120, p. 61.CrossRefGoogle Scholar
  21. 21.
    Ebenso, E.E., Okafor, P.C., Offiong, O.E., et al., Bull. Electrochem., 2001, vol. 17, p. 259.Google Scholar
  22. 22.
    Solmaz, R., Corros. Sci., 2014, vol. 79, p. 169.CrossRefGoogle Scholar
  23. 23.
    Lukovits, I., Kalman, E., and Palinkas, G., Corrosion, 1995, vol. 51, p. 201.CrossRefGoogle Scholar
  24. 24.
    Moretti, G., Quartarone, G., Tassan, A., et al., Electrochim. Acta, 1996, vol. 41, p. 1971.CrossRefGoogle Scholar
  25. 25.
    Shukla, S.K. and Quraishi, M.A., Corros. Sci., 2009, vol. 51, p. 1010.Google Scholar
  26. 26.
    Fouda, S., Al-Sarawy, A., Ahmed, F., et al., Corros. Sci., 2009, vol. 51, p. 485.CrossRefGoogle Scholar
  27. 27.
    Khadom, A.A., Yaro, A. S., and Kadhum, A.A.H., J. Chil. Chem. Soc., 2010, vol. 55, p. 150.CrossRefGoogle Scholar
  28. 28.
    El-Awady, A., Abd-El-Nabey, A., and Aziz, G., J. Electochem. Soc., 1992, vol. 139, p. 2149.CrossRefGoogle Scholar
  29. 29.
    Abboud, Y., Abourrich, A., Saffaj, T., et al., Appl. Surf. Sci., 2006, vol. 252, p. 8184.CrossRefGoogle Scholar
  30. 30.
    Moretti, G. and Guidi, F., Corros. Sci., 2002, vol. 44, p. 2000.Google Scholar
  31. 31.
    Moretti, G., Guidi, F., and Grion, G., Corros. Sci., 2004, vol. 46, p. 390.Google Scholar
  32. 32.
    Onen, A.I., Nwufo, B.T., Ebenso, E.E., et al., Int. J. Electrochem. Sci., 2010, vol. 5, p. 1570.Google Scholar
  33. 33.
    Musa, A.Y., Kadhum, A.A.H., Mohamad, A.B., et al., J. Mol. Struct. 2010, vol. 969, p. 233.CrossRefGoogle Scholar
  34. 34.
    Fang, J. and Li, J., J. Mol. Struct.: THEOCHEM, 2002, vol. 593, p. 179.CrossRefGoogle Scholar
  35. 35.
    Bereket, G., Hur, E., and Oretir, C., J. Mol. Struct.: THEOCHEM, 2002, vol. 578, p. 79.CrossRefGoogle Scholar
  36. 36.
    Wazzan, N.A. and Mahgoub, F.M., Open J. Phys. Chem., 2014, vol. 4, p. 8.CrossRefGoogle Scholar
  37. 37.
    Nataraja, S.E., Venkatesha, T.V., Tandon, H.C., et al., Corros. Sci., 2011, vol. 53, p. 4112.Google Scholar
  38. 38.
    Ju, H., Kai, Z., and Li, Y., Corros. Sci., 2008, vol. 50, p. 865.CrossRefGoogle Scholar
  39. 39.
    Lukovits, I., Kalman, E., and Zucchi, F., Corrosion, 2001, vol. 57, p. 3.CrossRefGoogle Scholar
  40. 40.
    Parr, R.G. and Pearson, R.G., J. Am. Chem. Soc., 1983, vol. 105, no. 26, p. 7516.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • P. A. L. Anawe
    • 1
  • C. U. Obi
    • 1
  • S. S. Mehdi
    • 2
  • K. O. Ogunniran
    • 3
  • B. I. Ita
    • 3
  • C. O. Ehi-Eromosele
    • 3
    Email author
  1. 1.Department of Petroleum EngineeringCovenant UniversityOtaNigeria
  2. 2.Department of Chemistry, College of ScienceAl-Nahrain UniversityBaghdadIraq
  3. 3.Department of ChemistryCovenant UniversityOtaNigeria

Personalised recommendations