Advertisement

Supramolecular complexes: Determination of stability constants on the basis of various experimental methods

  • V. P. Solov’ev
  • A. Yu. Tsivadze
Modern Problems of the Physical Chemistry of Surfaces, Materials Science, and Materials Protection

Abstract

Stability constants and formation enthalpies of supramolecular complexes of crown ethers and their cyclic and acyclic analogues are determined on the basis of experimental data obtained by different physicochemical methods in the terms of a general approach developed and implemented in the ChemEqui software package. The established regularities of variation of stability of complexes are discussed as dependent on the ligand structure, nature of the cation, solvent, and anion. The applicability of the suggested method of determining complexation selectivity is shown for multicomponent equilibria in solutions.

Keywords

Stability Constant Crown Ether DMFA KSCN Supramolecular Complex 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspectives, Wiley-VCH, 1995.Google Scholar
  2. 2.
    Izatt, R.M., Bradshaw, J.S., Nielsen, S.A., et al., Chem. Rev., 1985, vol. 85, p. 271.Google Scholar
  3. 3.
    Izatt, R.M., Bradshaw, J.S., Pawlak, K., et al., Chem. Rev., 1992, vol. 92, p. 1261.Google Scholar
  4. 4.
    Izatt, R.M., Eatough, D.J., and Christensen, J.J., Struct. Bonding (Berlin, Ger.), 1973, vol. 16, p. 161.Google Scholar
  5. 5.
    Izatt, R.M., Pawlak, K., Bradshaw, J.S., and Bruening, R.L., Chem. Rev., 1991, vol. 91, p. 1721.Google Scholar
  6. 6.
    Izatt, R.M., Pawlak, K., Bradshaw, J.S., and Bruening, R.L., Chem. Rev., 1995, vol. 95, p. 2529.Google Scholar
  7. 7.
    Izatt, R.M., Terry, R.E., Haymore, B.L., et al., J. Am. Chem. Soc., 1976, vol. 98, p. 7620.Google Scholar
  8. 8.
    Tsivadze, A.Yu., Varnek, A.A., and Khutorskii, V.E., Koordinatsionnye soedineniya metallov s kraun-ligandami (Coordination Compounds of Metals with Crown Ligands), Moscow: Nauka, 1991, p. 397.Google Scholar
  9. 9.
    Solov’ev, V.P., Vnuk, E.A., Strakhova, N.N., and Raevskii, O.A., in Itogi Nauki Tekh., Ser.: Khim. Termodin. Ravnovesiya, Moscow: VINITI, 1991, p. 374.Google Scholar
  10. 10.
    Tsvetkov, E.N., Bovin, A.N., and Syundyukova, V.Kh., Usp. Khim., 1988, vol. 57, p. 1353.Google Scholar
  11. 11.
    Solotnov, A.F., Solov’ev, V.P., Govorkova, L.V., et al., Koord. Khim., 1989, vol. 15, p. 319.Google Scholar
  12. 12.
    Marcus, Y., Rev. Anal. Chem., 2011, vol. 23, no. 4, p. 269.Google Scholar
  13. 13.
    Badescu, V.R. and Luca, C., Rev. Chim. (Bucharest, Rom.), 2005, vol. 56, p. 785.Google Scholar
  14. 14.
    Badescu, V.R. and Luca, C., Rev. Chim. (Bucharest, Rom.), 2006, vol. 57, p. 915.Google Scholar
  15. 15.
    Kirichenko, T., Vetrogon, V., Scherbakov, S., and Lukyanenko, N., Anal. Chim. Acta, 2004, vol. 505, no. 2, p. 277.Google Scholar
  16. 16.
    Buschmann, H.-J. and Schollmeyer, E., J. Solution Chem., 2002, vol. 31, p. 537.Google Scholar
  17. 17.
    Abraham, M.H., Danil de Namor, A.F., and Schulz, R.A., J. Chem. Soc., Faraday Trans., 1980, vol. 76, p. 869.Google Scholar
  18. 18.
    Buschmann, H.J., Cleve, E., and Schollmeyer, E.J., J. Solution Chem., 1994, vol. 23, p. 569.Google Scholar
  19. 19.
    Tsvetkov, E.N., Evreinov, V.I., and Baulin, V.E., Zh. Obshch. Khim., 1995, vol. 65, p. 1421.Google Scholar
  20. 20.
    Tsvetkov, E.N., Evreinov, V.I., Bondarenko, N.A., and Safronova, Z.V., Russ. J. Gen. Chem., 1996, vol. 66, no. 7, p. 1054.Google Scholar
  21. 21.
    Tsvetkov, E.N., Evreinov, V.I., Bondarenko, N.A., and Safronova, Z.V., Russ. J. Gen. Chem., 1999, vol. 69, no. 7, p. 1039.Google Scholar
  22. 22.
    Solov’ev, V.P., Baulin, V.E., Strakhova, N.N., and Govorkova, L.V., Izv. Akad. Nauk, Ser. Khim., 1994, p. 1581.Google Scholar
  23. 23.
    Solov’ev, V.P., Govorkova, L.V., Raevskii, O.A., et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1991, p. 575.Google Scholar
  24. 24.
    Solov’ev, V.P., Govorkova, L.V., Raevskii, O.A., et al., Izv. Akad. Nauk SSSR, Ser. Khim., 1989, p. 814.Google Scholar
  25. 25.
    Schneider, H.-J., Ang. Chem. Int. Ed., 2009, vol. 48, p. 3924.Google Scholar
  26. 26.
    Martinez-Diaz, M.V., Torre, G., and Torres, T., Chem. Commun., 2010, vol. 46, p. 7090.Google Scholar
  27. 27.
    Gorden, A.E.V., Xu, J., Raymond, K.N., and Durbin, P., Chem. Rev., 2003, vol. 103, p. 4207.Google Scholar
  28. 28.
    Bianchi, A., Calabi, L., Corana, F., et al., Chem. Rev., 2000, vol. 204, p. 309.Google Scholar
  29. 29.
    Analytical Methods in Supramolecular Chemistry, Schalley, C.A., Ed., Weinheim: Wiley-VCH, 2007, p. 484.Google Scholar
  30. 30.
    Gans, P., Sabatini, A., and Vacca, A., Talanta, 1996, vol. 43, p. 1739.Google Scholar
  31. 31.
    Bek, M. and Nad’pal, I. Issledovanie kompleksoobrazovaniya noveishimi metodami (Studies of Complexation by State-of-the-Art Techniques, Moscow.: Mir, 1989, p. 413.Google Scholar
  32. 32.
    Hartley, F.R., Burgess, C., and Alcock, R.M., Solution Equilibria, Ellis Horwood Ltd, 1980.Google Scholar
  33. 33.
    Comprehensive Supramolecular Chemistry: Molecular Recognition: Receptors for Molecular Guests, Oxford: Elsevier Sci., 1996, p. 850.Google Scholar
  34. 34.
    Anderegg, G., Pure Appl. Chem., 1982, vol. 54, p. 2693.Google Scholar
  35. 35.
    Anderegg, G., Arnaud-Neu, F., Delgado, R., et al., Pure Appl. Chem., 2005, vol. 77, p. 1445.Google Scholar
  36. 36.
    Arnaud-Neu, F., Delgado, R., and Chaves, S., Pure Appl. Chem., 2003, vol. 75, p. 71.Google Scholar
  37. 37.
    Berthon, G., Pure Appl. Chem., 1995, vol. 67, p. 1117.Google Scholar
  38. 38.
    Kiss, T., Sovago, I., and Gergely, A., Pure Appl. Chem., 1991, vol. 63, p. 597.Google Scholar
  39. 39.
    Kolarik, Z., Pure Appl. Chem., 1982, vol. 54, p. 2593.Google Scholar
  40. 40.
    Lajunen, L.H.J., Portanova, R., Piispanen, J., and Tolazzi, M., Pure Appl. Chem., 1997, vol. 69, p. 329.Google Scholar
  41. 41.
    Paoletti, P., Pure Appl. Chem., 1984, vol. 56, p. 491.Google Scholar
  42. 42.
    Pettit, L.D., Pure Appl. Chem., 1984, vol. 56, p. 247.Google Scholar
  43. 43.
    Popov, K., Ronkkomaki, H., and Lajunen, L.H.J., Pure Appl. Chem., 2001, vol. 73, p. 1641.Google Scholar
  44. 44.
    Portanova, R., Lajunen, L., Tolazzi, M., and Piispanen, J., Pure Appl. Chem., 2003, vol. 75, p. 495.Google Scholar
  45. 45.
    Sjoberg, S., Pure Appl. Chem., 1997, vol. 69, p. 1549.Google Scholar
  46. 46.
    Smith, R.M., Martell, A.E., and Chen, Y., Pure Appl. Chem., 1991, vol. 63, p. 1015.Google Scholar
  47. 47.
    Sovago, I., Kiss, T., and Gergely, A., Pure Appl. Chem., 1993, vol. 65, p. 1029.Google Scholar
  48. 48.
    Stary, J., Pure Appl. Chem., 1982, vol. 54, p. 2557.Google Scholar
  49. 49.
    Tuck, D.G., Pure Appl. Chem., 1983, vol. 55, p. 1477.Google Scholar
  50. 50.
    Yamauchi, O. and Odani, A., Pure Appl. Chem., 1996, vol. 68, p. 469.Google Scholar
  51. 51.
    Varnek, A. and Solov’ev, V., in Ion Exchange and Solvent Extraction, Sengupta, A.K. and Moyer, B.A., Eds., Boca Raton: CRC Press, Taylor and Francis Group, 2009, p. 319.Google Scholar
  52. 52.
    Solov’ev, V.P., Kireeva, N., and Tsivadze, A.Yu., J. Inclusion Phenom. Macrocyclic Chem., 2013, vol. 76, nos. 1–2, p. 159.Google Scholar
  53. 53.
    Solov’ev, V., Marcou, G., Tsivadze, A.Y., and Varnek, A., Ind. Eng. Chem. Res., 2012, vol. 51, p. 13482.Google Scholar
  54. 54.
    Solov’ev, V., Sukhno, I., Buzko, V., et al., J. Inclusion Phenom. Macrocyclic Chem., 2012, vol. 72, nos. 3–4, p. 309.Google Scholar
  55. 55.
    Solov’ev, V.P., Tsivadze, A.Y., and Varnek, A.A., Macroheterocycles, 2012, vol. 5, nos. 4–5, p. 404.Google Scholar
  56. 56.
    Solov’ev, V.P., Kireeva, N.V., Tsivadze, A.Yu., and Varnek, A.A., J. Struct. Chem., 2006, vol. 47, no. 2, p. 298.Google Scholar
  57. 57.
    Tetko, I.V., Solov’ev, V.P., Antonov, A.V., et al., J. Chem. Inf. Model, 2006, vol. 46, p. 808.Google Scholar
  58. 58.
    Svetlitski, R., Lomaka, A., and Karelson, M., Sep. Sci. Technol. (Philadelphia, PA, U. S.), 2006, vol. 41, p. 197.Google Scholar
  59. 59.
    Solov’ev, V.P. and Varnek, A.A., Izv. Akad. Nauk, Ser. Khim., 2004, p. 1380.Google Scholar
  60. 60.
    Toropov, A.A., Toropova, A.P., Nesterova, A.I., and Nabiev, O.M., Russ. J. Coord. Chem, 2004, vol. 30, p. 611.Google Scholar
  61. 61.
    Varnek, A.A., Wipff, G., Solov’ev, V.P., and Solotnov, A.F.J., Chem. Inf. Comput. Sci., 2002, vol. 42, p. 812.Google Scholar
  62. 62.
    Qi, Y.-H., Zhang, Q.-Y., and Xu, L.J., Chem. Inf. Comput. Sci., 2002, vol. 42, p. 1471.Google Scholar
  63. 63.
    Solov’ev, V.P., Varnek, A.A., and Wipff, G.J., Chem. Inf. Comput. Sci., 2000, vol. 40, p. 847.Google Scholar
  64. 64.
    Gakh, A.A., Sumpter, B.G., Noid, D.W., et al., J. Inclusion Phenom. Mol. Recognit. Chem., 1997, vol. 27, p. 201.Google Scholar
  65. 65.
    Shi, Z.G. and McCullough, E.A., J. Inclusion Phenom. Mol. Recognit. Chem., 1994, vol. 18, p. 9.Google Scholar
  66. 66.
    Gibson, G.TT., Mohamed, M.F., Neverov, A.A., and Brown, R.S., Inorg. Chem., 2006, vol. 45, p. 7891.Google Scholar
  67. 67.
    Ghasemi, J., Nayebi, Sh., Kubista, M., and Sjogreen, B., Talanta, 2006, vol. 68, p. 1201.Google Scholar
  68. 68.
    Martell, A.E. and Motekaitis, R.J., The Determination and Use of Stability Constants, NewYork: Wiley-VCH, 1992.Google Scholar
  69. 69.
    Computational Methods for the Determination of Formation Constants, Leggett, D.J., Ed., New York: Plenum Press, 1985, p. 478.Google Scholar
  70. 70.
    Sillen, L.G., Acta Chem. Scand., 1962, vol. 16, p. 159.Google Scholar
  71. 71.
    Ingri, N. and Sillen, L.G., Ark. Kemi, 1964, vol. 23, no. 10, p. 97.Google Scholar
  72. 72.
    Vetrogon, V.I., Lukyanenko, N.G., Schwing-Weill, M.-J., and Arnaud-Neu, F., Talanta, 1994, vol. 41, p. 2105.Google Scholar
  73. 73.
    Hartley, F.R., Burgess, C., and Alcock, R.M., Solution Equilibria, Chichester: Ellis, Horwood Ltd., 1980, p. 361.Google Scholar
  74. 74.
    Leggett, D.J., Am. Lab., 1982, vol. 14, p. 29.Google Scholar
  75. 75.
    Gaizer, F., Coord. Chem. Rev., 1979, vol. 27, p. 195.Google Scholar
  76. 76.
    Gans, P., Coord. Chem. Rev., 1976, vol. 19, p. 99.Google Scholar
  77. 77.
    Williams, D., The Metals of Life: the Solution Chemistry of Metal Ions in Biological Systems, Van Nostrand-Reinhold, 1971.Google Scholar
  78. 78.
    Rossotti, F.J.C., Rossotti, HS., and Whewell, R.J.J., J. Inorg. Nucl. Chem., 1971, vol. 33, p. 2051.Google Scholar
  79. 79.
    Madariaga, J.M. and Garcia, A., Comput. Chem. (Oxford, U. K.), 1984, vol. 8, p. 187.Google Scholar
  80. 80.
    Garcia, A. and Madariaga, J.M., Comput. Chem. (Oxford, U. K.), 1984, vol. 8, p. 193.Google Scholar
  81. 81.
    Gans, P., Sabatini, A., and Vacca, A., J. Chem. Soc., Dalton Trans., 1985, p. 1195.Google Scholar
  82. 82.
    Fletcher, R. and Powell, M.J.D., Comput. J, 1963, vol. 6, p. 163.Google Scholar
  83. 83.
    Havel, J., Horak, J., and Pavlikova, N., Scr. Fac. Sci. Nat. Univ. Purkynianae Brun., 1981, vol. 11, nos. 9–10, p. 387.Google Scholar
  84. 84.
    Sabatini, A., Vacca, A., and Gans, P., Talanta, 1974, vol. 21, p. 53.Google Scholar
  85. 85.
    Perrin, D.D. and Sayce, I.G., Talanta, 1967, vol. 14, p. 833.Google Scholar
  86. 86.
    Ingri, N., Kakolowicz, W., Sillen, L.G., and Warnqvist, B., Talanta, 1967, vol. 14, p. 1261.Google Scholar
  87. 87.
    Meloun, M. and Havel, J., Computation of Solution Equilibria. 1. Spectrophotometryp, Brno: Univ. of Purkyne, J.E., 1985, p. 184.Google Scholar
  88. 88.
    Meloun, M. and Havel, J., Folia Fac. Sci. Nat. Univ. Purkynianae Brun., Biol., 1984, vol. 25, no. 7, p. 1.Google Scholar
  89. 89.
    Meloun, M., Javurek, M., and Havel, J., Talanta, 1986, vol. 33, p. 513.Google Scholar
  90. 90.
    Gampp, H., Maeder, M., Meyer, Ch.J., and Zuberbuhler, A.D., Talanta, 1986, vol. 33, p. 943.Google Scholar
  91. 91.
    Computational Methods for the Determination of Formation Constants, Leggett, D.J., Ed., New York: Plenum Press, 1985.Google Scholar
  92. 92.
    Evseev, A.M. and Nikolaeva, L.S., Matematicheskoe modelirovanie khimicheskikh ravnovesii (Mathematical Modeling of Chemical Equilibria), Moscow: MGU, 1988, p. 192.Google Scholar
  93. 93.
    Borisova, A.P. and Evseev, A.M., Vestn. Mosk. Univ., Ser. 2: Khim., 1987, vol. 28, no. 3.Google Scholar
  94. 94.
    Kir’yanov, Yu.A., Nikolaeva, L.S., and Evseev, A.M., Avtomatizirovannaya sistema matematicheskogo modelirovaniya khimicheskikh ravnovesii s uchetom kinetiki balansa mass (Automated System of Mathematical Modeling of Chemical equilibria with Account for Mass Balance Kinetics), Moscow: VINITI, 1987, p. 76Google Scholar
  95. 95.
    Kir’yanov, Yu.A., Nikolaeva, L.S., and Evseev, A.M., Tez. dokl. XI Vses. seminara “Primenenie matem. metodov dlya opisaniya i izucheniya fiziko-khimicheskikh ravnovesii” (Abstracts of XI All-Union Seminar “Application of Mathematical Methods for Description and Study of physicochemical equilibria”), Novosibirsk, 1989, p. 122.Google Scholar
  96. 96.
    Bottari, E., Coccitto, T., Curzio, G., et al., Ann. Chim. (Rome, Italy), 1988, vol. 78, nos. 11–12, p. 635.Google Scholar
  97. 97.
    Frassineti, C., Ghelli, S., Gans, P., et al., Anal. Biochem., 1995, vol. 231, p. 374.Google Scholar
  98. 98.
    Frassineti, C., Alderighi, L., Gans, P., et al., Anal. Bioanal. Chem., 2003, vol. 376, p. 1041.Google Scholar
  99. 99.
    Bugaevskii, A.A. and Kholin, Yu.V. Tez. dokl. XI Vses. seminara “Primenenie matem. metodov dlya opisaniya i izucheniya fiziko-khimicheskikh ravnovesii” (Abstracts of XI All-Union Seminar “Application of Mathematical Methods to Description and Study of physicochemical equilibria”), Novosibirsk, 1989, p. 27.Google Scholar
  100. 100.
    Bugaevskii, A.A. and Kholin, Yu.V., Programmy dlya rascheta konstant ravnovesiya reaktsii v rastvorakh po dannym o kontsentratsii odnoi iz chastits, rastvorimosti individual’nogo veshchestva ili raspredeleniya komponenta mezhdu fazami (Programs for Calculation of Equilibrium Constants for Reactions in Solutions on the Basis of the Data on the Concentration of the Given Species, Solubility of Individual Substances, or Component Distribution between the Phases), Kharkov: UkrNIINTI, 1988.Google Scholar
  101. 101.
    Bugaevskii, A.A. and Kholin, Yu.V., Ukr. Khim. Zh., 1987, vol. 53, p. 571.Google Scholar
  102. 102.
    Bugaevskii, A.A. and Kholin, Yu.V., Zh. Prikl. Khim., 1986, vol. 59, p. 2360.Google Scholar
  103. 103.
    Koch, S. and Ackcrmann, G., Z. Chem., 1989, vol. 29, no. 4, p. 150.Google Scholar
  104. 104.
    Lampugnani, L., Meites, L., Papoff, P., and Rotunno, T., Anal. Chim. Acta, 1987, vol. 194, p. 77.Google Scholar
  105. 105.
    Destafano, C., Princi, P., Rigano, C., and Sammartano, S., Ann. Chim., 1987, vol. 77, nos. 7–8, p. 643.Google Scholar
  106. 106.
    Solov’ev, V.P., Chemical Equilibrium. Ver. 7.23, http://vpsolovev.ru/programs/.
  107. 107.
    Novikov, V.P. and Raevskii, O.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1983, p. 1336.Google Scholar
  108. 108.
    Del Piero, S., Melchior, A., Polese, P., et al., Ann. Chim., 2006, vol. 96, p. 1.Google Scholar
  109. 109.
    Gontar’, V.G., Prikhod’ko, N.V., Surguchenko, S.A., and Filippova, E.O., Zh. Fiz. Khim., 1988, vol. 62, p. 3139.Google Scholar
  110. 110.
    Stefano, C., Princi, P., Rigano, C., and Sammartano, S., Comput. Chem. (Oxford, U. K.), 1988, vol. 12, p. 305.Google Scholar
  111. 111.
    Stefano, C., Princi, P., and Rigano, C., Ann. Chim. (Rome, Italy), 1988, vol. 78, nos. 11–12, p. 671.Google Scholar
  112. 112.
    Tessman, A.B. and Ivanov, A.V., Vestn. Mosk. Univ., Ser. 2: Khim., 2001, vol. 42, no. 1, p. 19.Google Scholar
  113. 113.
    Izatt, R.M., Redd, E.H., and Christensen, J.J., Thermochim. Acta, 1983, vol. 64, p. 355.Google Scholar
  114. 114.
    Eatough, D.J., Christensen, J.J., and Izatt, R.M., Thermochim. Acta, 1972, vol. 3, p. 219.Google Scholar
  115. 115.
    Eatough, D.J., Izatt, R.M., and Christensen, J.J., Thermochim. Acta, 1972, vol. 3, p. 233.Google Scholar
  116. 116.
    Barres, M., Dubes, J.P., Romanetti, R., Tachoire, H., and Zahra, C., Thermochim. Acta, 1975, vol. 11, p. 235.Google Scholar
  117. 117.
    Ostapkevich, N.A., Barsukov, I.I., Meller, M.A., and Savel’eva, S.V., Zh. Fiz. Khim., 1982, vol. 56, p. 2163.Google Scholar
  118. 118.
    Borodin, V.A., Kozlovskii, E.V., and Vasil’ev, V.P., Zh. Neorg. Khim., 1982, vol. 27, p. 2169.Google Scholar
  119. 119.
    Mullens, J., Yperman, J., Francois, J.P., and Van Pouck, L.C.J., Phys. Chem., 1985, vol. 89, p. 2941.Google Scholar
  120. 120.
    Gubskii, S.M. and V’yunnik, I.N., Tez. dokl. XI Vses. seminara “Primenenie matem. metodov dlya opisaniya i izucheniya fiziko-khimicheskikh ravnovesii” (Abstracts of XI All-Union Seminar “Application of Mathematical Methods for Description and Study of physicochemical equilibria”), Novosibirsk, 1989, p. 20.Google Scholar
  121. 121.
    Schwesinger, R., Inorg. Chim. Acta, 1989, vol. 155, p. 145.Google Scholar
  122. 122.
    Barthel, J., Thermometric titrations, New York: Wiley, 1975, p. 209.Google Scholar
  123. 123.
    Vaughan, G.A., Thermometric and Enthalpimetric Titrimetry, London: Van Nostrand Reinhold, 1973, p. 255.Google Scholar
  124. 124.
    Robertis, A. and Stefano, C., Thermochim. Acta, 1989, vol. 138, p. 141.Google Scholar
  125. 125.
    Himmelblau, D.M., Applied Nonlinear Programming, Mcgraw-Hill, 1972.Google Scholar
  126. 126.
    Conley, W., Int. J. Math. Educ. Technol., 1981, vol. 12, p. 609.Google Scholar
  127. 127.
    Arnaud-Neu, F., Delgado, R., and Chaves, S., Pure Appl. Chem., 2003, vol. 75, p. 71.Google Scholar
  128. 128.
    Smith, W.R., Theor. Chem.: Adv. Perspect., New York, 1980, p. 185.Google Scholar
  129. 129.
    Novikov, V.P., Ignat’eva, T.I., and Raevskii, O.A., Zh. Neorg. Khim., 1986, vol. 31, p. 1474.Google Scholar
  130. 130.
    Solov’ev, V.P., Kazachenko, V.P., Zavel’skii, V.O., et al., Koord. Khim., 1987, vol. 13, p. 909.Google Scholar
  131. 131.
    Raevskii, O.A., Solov’ev, V.P., Govorkova, L.V., and Vnuk, E.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1987, p. 594.Google Scholar
  132. 132.
    Solov’ev, V.P., Vnuk, E.A., and Raevskii, O.A., Koord. Khim., 1988, vol. 14, p. 1372.Google Scholar
  133. 133.
    Solov’ev, V.P., Vnuk, E.A., and Raevskii, O.A., Izv. Akad. Nauk SSSR, Ser. Khim., 1988, p. 776.Google Scholar
  134. 134.
    Hemminger, W. and Höhne, G., Calorimetry: Fundamentals and Practice, VCH Pub, 1984.Google Scholar
  135. 135.
    Oscarson, J.L. and Izatt, R.M., Phys. Methods Chem., 1992, vol. 6, p. 573.Google Scholar
  136. 136.
    Oscarson, J.L., Izatt, R.M., Hill, J.O., and Brown, P.R., Exp. Thermodyn., 1994, vol. 4, p. 211.Google Scholar
  137. 137.
    Solov’ev, V.P., Strakhova, N.N., Raevsky, O.A., et al., Org. Chem., 1996, vol. 61, p. 5221.Google Scholar
  138. 138.
    Rudiger, V., Schneider, H.-J., Solov’ev, V.P., et al., Eur. J. Org. Chem., 1999, p. 1847.Google Scholar
  139. 139.
    Ghasemi, J., Nayebi, Sh., Kubista, M., and Sjogreen, B., Talanta, 2006, vol. 68, p. 1201.Google Scholar
  140. 140.
    Melouna, M., Bordovska, S., Syrovy, T., and Vrana, A., Anal. Chim. Acta, 2006, vol. 580, p. 107.Google Scholar
  141. 141.
    Cation Binding by Macrocycles, Inoue, Y. and Gokel, G.W., Eds., New York: Marcel Dekker, 1990, p. 761.Google Scholar
  142. 142.
    Inoue, Y. and Wada, T., Adv. Supramol. Chem., 1997, vol. 4, p. 55.Google Scholar
  143. 143.
    Fielding, L., Tetrahedron, 2000, vol. 56, p. 6151.Google Scholar
  144. 144.
    Popov, K., Sultanova, N., Rönkkömäki, H., et al., Food Chem., 2006, vol. 96, p. 248.Google Scholar
  145. 145.
    Skene, W., Berl, V., Risler, H., et al., Org. Biomol. Chem., 2006, vol. 4, p. 3652.Google Scholar
  146. 146.
    Fielding, L., Prog. Nucl. Magn. Reson. Spectrosc., 2007, vol. 51, p. 219.Google Scholar
  147. 147.
    Takeda, Y., Yano, H., Ishbashi, M., and Isozumi, H., Bull. Chem. Soc. Jpn., 1980, vol. 53, p. 72.Google Scholar
  148. 148.
    Takeda, Y., Bull. Chem. Soc. Jpn., 1981, vol. 54, p. 3133.Google Scholar
  149. 149.
    Takeda, Y., Kudo, Y., and Fujiwara, S., Bull. Chem. Soc. Jpn., 1985, vol. 58, p. 1315.Google Scholar
  150. 150.
    Evreinov, V.I., Baulin, V.E., Vostroknutova, Z.N., and Tsvetkov, E.N., Izv. Akad. Nauk, Ser. Khim., 1993, p. 518.Google Scholar
  151. 151.
    Tawarah, K.M. and Mizyed, S.A., J. Solution Chem., 1989, vol. 18, p. 387.Google Scholar
  152. 152.
    Filella, M. and May, P.M., Talanta, 2005, vol. 65, p. 1221.Google Scholar
  153. 153.
    Gans, P. and O’Sullivan, B., Talanta, 2000, vol. 51, p. 33.Google Scholar
  154. 154.
    Gramlich, V., Lubal, P., Musso, S., and Anderegg, G., Helv. Chim. Acta, 2001, vol. 84, p. 623.Google Scholar
  155. 155.
    Bismondo, A., Comuzzi, C., and Di Bernardo, P., Inorg. Chim. Acta, 1999, vol. 286, p. 103.Google Scholar
  156. 156.
    Sun, Y., Motekaitis, R., and Martell, A., J. Coord. Chem., 1995, vol. 36, p. 235.Google Scholar
  157. 157.
    Solov’ev, V.P., Strakhova, N.N., Kazachenko, V.P., et al., J. Org. Chem., 1998, p. 1379.Google Scholar
  158. 158.
    Dimmock, P.W., Warwick, P., and Robbins, R.A., Analyst, 1995, vol. 120, p. 2159.Google Scholar
  159. 159.
    Hancock, R.D., Analyst, 1997, vol. 122, p. 51R.Google Scholar
  160. 160.
    Hancock, R.D. and Martell, A.E., Chem. Rev., 1989, vol. 89, p. 1875.Google Scholar
  161. 161.
    Kumok, V.N., Zakonomernosti v ustoichivosti koordinatsionnykh soedinenii v rastvorakh (Regularities with Respect to Stability of Coordination Compounds in Solutions), Tomsk: Izd-vo Tomskogo un-ta, 1977.Google Scholar
  162. 162.
    Horrion, J. and Sonveaux, E., Bull. Soc. Chim. Belg., 1984, vol. 93, p. 347.Google Scholar
  163. 163.
    Brinkley, S.R.J., Chem. Phys., 1947, vol. 15, p. 107.Google Scholar
  164. 164.
    Pujanek, M., Pr. Nauk. Inst. Chem. Nieorg. Metal. Pierwiastkow Rzadkich Politech. Wroclaw., 1986, no. 55, p. 254.Google Scholar
  165. 165.
    Gusnin, S.Yu., Omel’yanov, G.A., Reznikov, G.V., and Sirotkin, V., Minimizatsiya v inzhenernykh raschetakh na EVM. Biblioteka programm (Minimization in Engineering Computer Calculations. Software Library), Moscow: Mashinostroenie, 1981, p. 120.Google Scholar
  166. 166.
    Incerti, S., Zirilli, F., and Parisi, V., Computer J, 1981, vol. 24, no. 1, p. 87.Google Scholar
  167. 167.
    Incerti, S., Parisi, V., and Zirilli, F., SIAM J. Numer. Anal., 1979, vol. 16, p. 779.Google Scholar
  168. 168.
    Golub, G.H. and Reinsch, C., Numer. Math., 1970, vol. 14, p. 403.Google Scholar
  169. 169.
    Hock, W. and Schittkowski, K., Computing, 1983, vol. 30, no. 4, p. 335.Google Scholar
  170. 170.
    Koort, E., Gans, P., Herodes, K., et al., Anal. Bioanal. Chem., 2006, vol. 385, p. 1124.Google Scholar
  171. 171.
    Seber, G.A.F.., Linear Regression Analysis, New York, London, Sydney: John Wiley & Sons, 1977.Google Scholar
  172. 172.
    Hayward, R.C., Chem. Soc. Rev., 1983, vol. 12, p. 285.Google Scholar
  173. 173.
    Solov’ev, V.P., Govorkova, L.V., Raevskii, O.A., and Zefirov, N.S., Dokl. Akad. Nauk, 1992, vol. 324, p. 830.Google Scholar
  174. 174.
    Baulin, V.E., Solov’ev, V.P., Strakhova, N.N., et al., Koord. Khim., 1996, vol. 22, p. 253.Google Scholar
  175. 175.
    Solov’ev, V.P., Baulin, V.E., Strakhova, N.N., et al., J. Chem. Soc., Perkin Trans. 2, 1998, p. 1489.Google Scholar
  176. 176.
    Solov’ev, V.P., Strakhova, N.N., and Raevskii, O.A., Izv. Akad Nauk SSSR, Ser. Khim., 1988, p. 2400.Google Scholar
  177. 177.
    Strakhova, N.N., Solov’ev, V.P., and Raevskii, O.A., Koord. Khim., 1989, vol. 15, p. 483Google Scholar
  178. 178.
    Strakhova, N.N., Solov’ev, V.P., Raevskii, O.A., et al., Koord. Khim., 1990, vol. 16, p. 1612.Google Scholar
  179. 179.
    Meloun, M. and Cermak, J., Talanta, 1984, vol. 31, p. 947.Google Scholar
  180. 180.
    Poczynajlo, A., J. Radioanal. Nucl. Chem., 1989, vol. 134, p. 97.Google Scholar
  181. 181.
    Arena, G., Rizzarelli, E., Sammartano, S., and Rigano, C., Talanta, 1979, vol. 26, p. 1.Google Scholar
  182. 182.
    Gaizer, F. and Kiss, I., Talanta, 1994, vol. 41, p. 419.Google Scholar
  183. 183.
    Asuero, A.G., Jimenez-Trillo, J.L., and Navas, M.J., Talanta, 1986, vol. 33, p. 531.Google Scholar
  184. 184.
    Laouenan, A. and Suet, E., Talanta, 1985, vol. 32, p. 245.Google Scholar
  185. 185.
    Izquierdo, A. and Beltran, J.L., J. Chemom., 1988, vol. 3, p. 217.Google Scholar
  186. 186.
    Fang, X., Fernando, Q., Ugwu, S.O., and Blanchard, J., Pharm. Res., 1995, vol. 12, p. 1423.Google Scholar
  187. 187.
    Gaizer, F. and Silber, H.B., Acta Phys. Chem., 1990, vol. 36, nos. 1–4, pp. 28, 35a.Google Scholar
  188. 188.
    Brugger, J., Comput. Geosci., 2007, vol. 33, no. 2, p. 248.Google Scholar
  189. 189.
    Gans, P., Sabatini, A., and Vacca, A., Inorg. Chim. Acta, 1976, vol. 18, p. 237.Google Scholar
  190. 190.
    Stefano, C., Mineo, P., Rigano, C., and Sammartano, S., Ann. Chim., 1993, vol. 83, nos. 5–6, p. 243.Google Scholar
  191. 191.
    Baeza Baeza, J.J., Ramis Ramos, G., and Mongay Fernandez, C., Anal. Chim. Acta, 1989, vol. 223, p. 419.Google Scholar
  192. 192.
    Gaizer, F. and Puskas, A., Talanta, 1981, vol. 28, p. 925.Google Scholar
  193. 193.
    Michalowski, T., Talanta, 1992, vol. 39, p. 1127.Google Scholar
  194. 194.
    Kostromina, N.A., Levchuk, O.V., Kholin, Y.V., and Koval’, L.B, Ukr. Khim. Zh., 2002, vol. 68, nos. 3–4, p. 5.Google Scholar
  195. 195.
    Wozniak, M. and Nowogrocki, G., Talanta, 1978, vol. 25, nos. 11–12, p. 643.Google Scholar
  196. 196.
    Nowogrocki, G., Canonne, J., and Wozniak, M., Anal. Chim. Acta, 1979, vol. 112, p. 185.Google Scholar
  197. 197.
    Cromer-Morin, M., Scharff, J.P., and Martin, R.P., Analusis, 1982, vol. 10, p. 92.Google Scholar
  198. 198.
    Nievergelt, Y., Analyst, 1994, vol. 119, p. 145.Google Scholar
  199. 199.
    Alcock, R.M., Hartley, F.R., and Rogers, D.E., J. Chem. Soc., Dalton Trans., 1978, p. 115.Google Scholar
  200. 200.
    Taylor, P.D., Morrison, I.E.G., and Hider, R.C., Talanta, 1988, vol. 35, p. 507.Google Scholar
  201. 201.
    Kubista, M., Sjoback, R., and Nygren, J., Anal. Chim. Acta, 1995, vol. 302, p. 121.Google Scholar
  202. 202.
    Papanastasiou, G. and Ziogas, I., Talanta, 1995, vol. 42, p. 827.Google Scholar
  203. 203.
    Meloun, M. and Javurek, M., Talanta, 1985, vol. 32, p. 973.Google Scholar
  204. 204.
    Gans, P., Sabatini, A., and Vacca, A., Ann. Chim. (Rome, Italy), 1999, vol. 89, nos. 1–2, p. 45.Google Scholar
  205. 205.
    Meloun, M. and Militky, J., Microchim. Acta, 1993, vol. 112, nos. 1–4, p. 155.Google Scholar
  206. 206.
    Decock, P. and Sarkar, B., Can. J. Chem., 1987, vol. 65, p. 2798.Google Scholar
  207. 207.
    Collins, M.J., J. Chem. Educ., 1986, vol. 63, p. 457.Google Scholar
  208. 208.
    Meloun, M., Javurek, M., and Militky, J., Microchim. Acta, 1992, vol. 109, nos. 5–6, p. 221.Google Scholar
  209. 209.
    Motekaitis, R.J. and Martell, A.E., Can. J. Chem., 1982, vol. 60, p. 168.Google Scholar
  210. 210.
    Barbosa, J., Barron, D., Beltran, J.L., and Sanz-Nebot, V., Anal. Chim. Acta, 1995, vol. 317, nos. 1–3, p. 75.Google Scholar
  211. 211.
    Gampp, H., Maeder, M., and Zuberbuehler, A.D., Talanta, 1980, vol. 27, p. 1037.Google Scholar
  212. 212.
    Havel, J. and Meloun, M., Talanta, 1986, vol. 33, p. 525.Google Scholar
  213. 213.
    Fournaise, R. and Petitfaux, C., Talanta, 1987, vol. 34, p. 385.Google Scholar
  214. 214.
    Goldstein, R.F. and Leung, E., Anal. Biochem., 1990, vol. 190, p. 220.Google Scholar
  215. 215.
    Dyson, R.M., Kaderli, S., Lawrance, G.A., et al., Anal. Chim. Acta, 1997, vol. 353, nos. 2–3, p. 381.Google Scholar
  216. 216.
    McBryde, W.A.E. and McCourt, J.L., Talanta, 1972, vol. 19, p. 1486.Google Scholar
  217. 217.
    Hynes, M.J., J. Chem. Soc., Dalton Trans., 1993, p. 311.Google Scholar
  218. 218.
    Sidrak, Y.L. and Aboul-Seoud, A., J. Comput. Chem., 1987, vol. 8, p. 575.Google Scholar
  219. 219.
    Rigano, C., Grasso, M., and Sammartano, S., Ann. Chim. (Rome, Italy), 1984, vol. 74, nos. 7–8, p. 537.Google Scholar
  220. 220.
    Comuzzi, C., Polese, P., Melchior, A., et al., Talanta, 2003, vol. 59, p. 67.Google Scholar
  221. 221.
    May, P.M., Murray, K., and Williams, D.R., Talanta, 1988, vol. 35, p. 825.Google Scholar
  222. 222.
    Cazallas, R., Citores, M.J., Etxebarria, N., et al., Talanta, 1994, vol. 41, p. 1637.Google Scholar
  223. 223.
    Meloun, M., Chylkova, J., and Bartos, M., Analyst, 1986, vol. 111, p. 1189.Google Scholar
  224. 224.
    Hartnett, M.K., Bos, M., van der Linden, W.E., and Diamond, D., Anal. Chim. Acta, 1995, vol. 316, p. 347.Google Scholar
  225. 225.
    Gampp, H., Maeder, M., Mayer, Ch.J., and Zuberbuhler, A.D., Talanta, 1985, vol. 32, p. 95.Google Scholar
  226. 226.
    Gampp, H., Maeder, M., Meyer, Ch.J., and Zuberbuhler, A.D., Talanta, 1985, vol. 32, p. 257.Google Scholar
  227. 227.
    Gampp, H., Maeder, M., Meyer, Ch.J., and Zuberbuhler, A.D., Talanta, 1985, vol. 32, p. 1113.Google Scholar
  228. 228.
    Rounaghi, G.H. and Gerey, N.G., Asian J. Chem., 2007, vol. 19, p. 929.Google Scholar
  229. 229.
    Tauler, R. and Casassas, E., Analusis, vol. 20, no. 5, p. 255.Google Scholar
  230. 230.
    Ekelund, R., Sillen, L.G., and Wahlberg, O., Acta Chem. Scand., 1970, vol. 24, p. 3073.Google Scholar
  231. 231.
    Leporati, E. and Nardi, G., Gazz. Chim. Ital., 1991, vol. 121, no. 3, p. 147.Google Scholar
  232. 232.
    Alderighi, L., Gans, P., Ienco, A., et al., Coord Chem. Rev., 1999, vol. 184, p. 311.Google Scholar
  233. 233.
    Beltran, J.L., Codony, R., and Prat, M.D., Anal. Chim. Acta, 1993, vol. 276, p. 441.Google Scholar
  234. 234.
    Gans, P., Sabatini, A., and Vacca, A., J. Solution Chem., 2008, vol. 37, p. 467.Google Scholar
  235. 235.
    Gans, P. and Vacca, A., Talanta, 1974, vol. 21, p. 45.Google Scholar
  236. 236.
    Gans, P., Sabatini, A., and Vacca, A., Inorg. Chim. Acta, 1983, vol. 79, nos 1–6, p. 219.Google Scholar
  237. 237.
    Gadiokov, V. and Mikhailova, K., Comput. Chem., 1989, vol. 13, no. 4, p. 325.Google Scholar
  238. 238.
    Gordon, W.E., Anal. Chem., 1982, vol. 54, p. 1595.Google Scholar
  239. 239.
    Ingri, N., Andersson, I., Pettersson, L., et al., Acta Chem. Scand., 1996, vol. 50, p. 717.Google Scholar
  240. 240.
    Wu, Y., Cai, H., and Xu, H., Jisuanji Yu Yingyong Huaxue, 1989, vol. 6, no. 2, p. 138.Google Scholar
  241. 241.
    Johansson, A. Johansson, S., et al., Analyst (London, U. K.), 1979, vol. 104, no. 1240, p. 601.Google Scholar
  242. 242.
    Wentworth, W.E., Hirsch, W., and Chen, E.C.M., J. Phys. Chem., 1967, vol. 71, p. 218.Google Scholar
  243. 243.
    Buschmann, H.J., Thermochim. Acta, 1986, vol. 102, p. 179.Google Scholar
  244. 244.
    Buschmann, H.J. and Mutihac, L., Rev. Roum. Chim., 1994, vol. 39, p. 563.Google Scholar
  245. 245.
    Izatt, R.M., Lamb, J.D., Rossiter, B.E., et al., J. Chem. Soc., Chem. Commun., 1978, no. 9, p. 386.Google Scholar
  246. 246.
    Izatt, R.M., Dearden, D.V., Brown, P.R., et al., J. Am. Chem. Soc., 1983, vol. 105, p. 1785.Google Scholar
  247. 247.
    Davidson, R.B., Izatt, R.M., Christensen, J.J., et al., Org. Chem., 1984, vol. 49, p. 5080.Google Scholar
  248. 248.
    Zavel’skii, V.O., Kazachenko, V.P., Novikov, V.P., et al., Koord. Khim., 1986, vol. 12, p. 1060.Google Scholar
  249. 249.
    Raevsky, O.A., Solov’ev, V.P., Solotnov, A.F., et al., J. Org. Chem., 1996, vol. 61, p. 8113.Google Scholar
  250. 250.
    Buschmann, H.J., Inorg. Chim. Acta, 1986, vol. 125, p. 31.Google Scholar
  251. 251.
    Lehn, J.M. and Vierling, P., Tetrahedron Lett., 1980, vol. 21, p. 1323.Google Scholar
  252. 252.
    Inoue, Y., Liu, Y., Tong, L.H., et al., J. Chem. Soc., Perkin Trans. 2, 1993, p. 1947.Google Scholar
  253. 253.
    Cox, B.G. and Schneider, H., Pure Appl. Chem., 1989, vol. 61, p. 171.Google Scholar
  254. 254.
    Schultz, R.A., White, B.D., Dishong, D.M., et al., J. Am. Chem. Soc., 1985, vol. 107, p. 6659.Google Scholar
  255. 255.
    Coxon, A.C. and Stoddart, J.F., J. Chem. Soc., Perkin Trans. 1, 1977, p. 767.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations