Skip to main content

Boron and fluorine doped ZnO films obtained from zinc chloride precursor via chemical spray pyrolysis

Abstract

Both boron (1, 2 and 3 at %) and fluorine (1, 3, 5 and 7 at %) doped zinc oxide thin films (ZnO:B:F) were fabricated using zinc chloride precursor by airbrush spray pyrolysis technique on glass substrates. X-ray diffraction (XRD) measurements show that all ZnO:B:F films have hexagonal wurtzite structure with a preferential growth along the [0 0 2] direction on glass substrates. Scanning electron microscope (SEM) results show that the morphologies of all doped films have a regular hexagonal shape. The optical measurements reveal that ZnO:B:F films have a direct band gap and optical energy gaps are increasing with boron and fluorine concentration. The optical transmittance of B and F doped ZnO films is measured very low due to columnar structure of prepared films. Moreover, it has been observed that the doping of ZnO films with boron and fluorine decreases the electrical resistance, and the lowest resistances of films were observed at 1%B–3%F and 2%B–3%F concentrations.

This is a preview of subscription content, access via your institution.

References

  1. Guofang, F., Jiping, N., and Jisheng, Y., Opt. Laser Technol., 2007, vol. 39, p. 421.

    Article  Google Scholar 

  2. Chen, X., Lin, Q., Ni, J., et al., Thin Solid Films, 2011, vol. 520, p. 1263.

    Article  Google Scholar 

  3. Sahay, P.P. and Nath, R.K., Sensor Actuat., Ser. B, 2008, vol. 134, p. 654.

    Article  Google Scholar 

  4. Nam, E., Kang, Y.-H., Jung, D., and Kim, Y.S., Thin Solid Films, 2010, vol. 518, p. 6245.

    Article  Google Scholar 

  5. Wang, F.-H., Chang, H.-P., Tseng, C.-C., et al., Curr. Appl. Phys., 2011, vol. 11, p. S12.

    Article  Google Scholar 

  6. Tsai, Y.-Z., Wang, N.-F., and Tsai, C.-L., Thin Solid Films, 2010, vol. 518, p. 4955.

    Article  Google Scholar 

  7. Gao, L., Zhang, Y., Zhang, J.-M., and Xum K.-W., Appl. Surf. Sci., 2011, vol. 257, p. 2498.

    Article  Google Scholar 

  8. Lee, W., Shin, S., Jung, D.-R., et al., Curr. Appl. Phys., 2012, vol. 12, p. 628.

    Article  Google Scholar 

  9. Kim, G.H., Hwang, D.H., and Woo, S.I., Mater. Chem. Phys., 2011, vol. 131, p. 77.

    Article  Google Scholar 

  10. Maldonado, A., Tirado-Guerra, S., Cázares, J.M., de la L. Olvera, M., Thin Solid Films, 2010, vol. 518, p. 1815.

    Article  Google Scholar 

  11. He, H.Y. and Liang, Q., Curr. Appl. Phys., 2012, vol. 12, p. 865.

    Article  Google Scholar 

  12. Bouhssira, N., Abed, S., Tomasella, E., et al., Appl. Surf. Sci., 2006, vol. 252, p. 5594.

    Article  Google Scholar 

  13. Han, N., Hu, P., Zuo, A., et al., Sensor Actuat., Ser. B, 2010, vol. 145, p. 114.

    Article  Google Scholar 

  14. Tsay, C.-Y., Cheng, H.-C., Tung, Y.-T., et al., Thin Solid Films, 2008, vol. 517, p. 1032.

    Article  Google Scholar 

  15. Lupan, O., Pauporté, T., Chow, L., et al., Appl. Surf. Sci., 2010, vol. 256, p. 1895.

    Article  Google Scholar 

  16. Chang, J.F., Wang, H.L., and Hon, M.H., J. Cryst. Growth, 2000, vol. 211, p. 93.

    Article  Google Scholar 

  17. Chakraborty, A., Mondal, T., Bera, S.K., et al., Mater. Chem. Phys., 2008, vol. 112, p. 162.

    Article  Google Scholar 

  18. Ashour, A., Kaid, M., El-Sayed, N., and Ibrahim, A., Appl. Surf. Sci., 2006, vol. 252, p. 7844.

    Article  Google Scholar 

  19. Alver, U., Kudret, A., and Tekerek, S., J. Phys. Chem. Solids, 2011, vol. 72, p. 701.

    Article  Google Scholar 

  20. Alver, U., Kılinc, T., Bacaksιz, E., and Nezir, S., Mater. Chem. Phys., 2007, vol. 106, p. 227.

    Article  Google Scholar 

  21. Duy-Thach Phan and Gwiy-Sang Chung, Appl. Surf. Sci., 2011, vol. 257, p. 4339.

    Article  Google Scholar 

  22. Hartnagel, H.L., Dawar, A.L., Jain, A.K., and Jagadish, C., Semiconducting Transparent Thin Films, Bristol: IOP Publ., 1995, p. 244.

    Google Scholar 

  23. Burstein, E., Phys. Rev., 1954, vol. 93, p. 632.

    Article  Google Scholar 

  24. Ratheesh Kumar, P.M., Sudha Kartha, C., Vijayakumar, K.P., et al., Mater. Sci. Eng., Ser. B, 2005, vol. 17, p. 307.

    Article  Google Scholar 

  25. de la L. Olvera, M., Maldonado, A., Asomoza, R., and Melendez-Lira, M., Sol. Energy Mater. Sol. Cells, 2002, vol. 71, p. 61.

    Article  Google Scholar 

  26. Bacaksiz, E., Parlak, M., Tomakin, M., et al., J. Alloys Compd., 2008, vol. 466, p. 447.

    Article  Google Scholar 

  27. Pawar, B.N., Cai, G., Ham, D., et al., Sol. Energy Mater. Sol. Cells, 2009, vol. 93, p. 524.

    Article  Google Scholar 

  28. Mahmood, K. and Park, S.B., J. Cryst. Growth., 2012, vol. 361, p. 30.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kerli.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kerli, S., Alver, U., Tanrıverdi, A. et al. Boron and fluorine doped ZnO films obtained from zinc chloride precursor via chemical spray pyrolysis. Prot Met Phys Chem Surf 50, 797–802 (2014). https://doi.org/10.1134/S2070205114060069

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205114060069

Keywords

  • Boron
  • Fluorine
  • Spray Pyrolysis
  • Zinc Chloride
  • Spray Pyrolysis Technique