Skip to main content
Log in

The mechanism of formation of composite microarc coatings on aluminum alloys

  • Protective Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

It is shown that heating of an internal layer of microarc coating up to temperatures at which insignificant rates of heat removal from microdischarges that possess a temperature of no less than 1200°C are ensured leads to realization of a sufficient time interval for the occurrence of almost 100% transformation of low-temperature aluminum-oxide modifications into high-temperature ones. Insufficient heating of a number of areas of the coating to these temperatures is the main reason for formation of a composite microarc coating that contains both low- and high-temperature aluminum-oxide modifications in its internal layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aver’yanov, E.E., Spravochnik po anodirovaniyu (Anodizing handbook), Moscow: Mashinostroenie, 1988.

    Google Scholar 

  2. Tomashov, N.D., Zalivalov, F.P., and Tyukina, M.N., Tolstosloinoe anodirovanie alyuminiya i ego splavov (Thick-layer anodizing of aluminum and its alloys), Moscow: Mashinostroenie, 1968.

    Google Scholar 

  3. Bakovets, V.V., Polyakov, O.V., and Dolgovesova, I.P., Plazmennoelektroliticheskaya anodnaya obrabotka metallov (Plasma-electrolytic anodic treatment of metals), Novosibirsk: Nauka. Sibirskoe otdelenie, 1990.

    Google Scholar 

  4. Chernenko, V.I., Snezhko, L.A., and Papanova, I.I., Poluchenie pokrytii anodno-iskrovym elektrolizom (Formation of coatings using anode-spark electrolysis), Leningrad: Khimiya, 1991.

    Google Scholar 

  5. Suminov, I.V., Epel’fel’d, A.V., Lyudin, V.B., et al., Mikrodugovoe oksidirovanie (teoriya, tekhnologiya, oborudovanie) (Microarc oxidation (theory, technology, equipment)), Moscow: EKOMET, 2005.

    Google Scholar 

  6. Slonova, A.I. and Terleeva, O.P., Morphology, structure, and phase composition of microplasma coatings formed on Al-Cu-Mg alloy, Prot. Met. Phys. Chem. Surf., 2008, vol. 44, no. 1, pp. 72–83.

    Google Scholar 

  7. Yerokhin, A.L., Snisko, A.L., Gurevina, N.L., et al., Discharge characterization in plasma electrolytic oxidation of aluminium, J. of Physics D: Applied Physics, 2003, vol. 36, pp. 2110–2120.

    Article  CAS  Google Scholar 

  8. Khimicheskaya entsiklopediya (Chemical encyclopedia), Moscow: Sov. entsiklopediya, 1988, vol. 1, p. 623.

  9. Markov, G.A., Terleeva, O.P., and Shulepko, E.K., Mikrodugovye i dugovye metody naneseniya zashchitnykh pokrytii, in Nauch. tr. MINKhiGP im. Gubkina. Vyp. 185. Povyshenie iznosostoikosti detalei gazoneftyanogo oborudovaniya za schet realizatsii effekta izbiratel’nogo perenosa i sozdaniya iznosostoikikh pokrytii (Scientific works of Gubkin MIOCG, issue 185. Increase of wear-resistance of oil and gas equipment parts due to realization of selective transfer effect and development of wear-resistant coatings), Moscow, 1985, pp. 54–64.

    Google Scholar 

  10. Dunleavy, C.S., Golosnoy, I.O., Curran, J.A., and Clyne, T.W., Characterisation of discharge events during plasma electrolytic oxidation, Surf. Coat. Technol., 2009, vol. 203, pp. 3410–3419.

    Article  CAS  Google Scholar 

  11. McPherson, R., Formation of metastable phases in flame and plasma-prepared alumina, J. Mater. Sci., 1973, no. 8, pp. 851–858.

    Google Scholar 

  12. Rakoch, A.G., Khokhlov, V.V., Bautin, V.A., et al., Model representations of mechanism of microarc oxidation of metallic materials and control of this process, Prot. Met. Phys. Chem. Surf., 2006, vol. 42, no. 2, pp. 173–184.

    Google Scholar 

  13. Rakoch, A.G., Bardin, I.V., Kovalev, V.L., and Avanesyan, T.G., Microarc oxidation of light construction alloys. P. 1. Basic concepts of microarc oxidation of light construction alloys, Izv. Vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya, 2011, no. 2, pp. 58–62.

    Google Scholar 

  14. Rakoch, A.G., Bardin, I.V., Kovalev, V.L., and Avanesyan, T.G., Microarc oxidation of light construction alloys. P. 2. Effect of current form on kinetics of microarc coating growth on surface of light construction alloys in basic (pH ≤ 12.5) electrolytes, Izv. Vuzov. Poroshkovaya metallurgiya i funktsional’nye pokrytiya, 2011, no. 3, pp. 59–62.

    Google Scholar 

  15. Tillous, E.K., Toll-Duchanoy, T., and Bauer-Grosse, E., Microstructure and 3d microtomographic characterization of porosity of mao surface layers formed on aluminium and 2214 t6 alloy, Surf. Coat. Technol, 2009, vol. 203, no. 13, pp. 1850–1855.

    Article  CAS  Google Scholar 

  16. Krivandin, V.A., Arutyunov, V.A., Belousov, V.V., et al., Teplotekhnika metallurgicheskogo proizvodstva. T. 1. Teoreticheskie osnovy: Ucheb. posobie dlya vuzov (Heat and mass transfer: workbook for higher education), Moscow: MISiS, 2002.

    Google Scholar 

  17. Pribytkov, I.A., Teplomassoobmen: Ucheb.-metod. posobie (Heat and mass transfer: study and methodology manual), Moscow: Ucheba, 2002.

    Google Scholar 

  18. Matykina, E., Arrabal, R., Mohamed, A., et al., Corros. Sci., 2009, no. 51, pp. 2897–2905.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Rakoch.

Additional information

Original Russian Text © A.G. Rakoch, A.A. Gladkova, V.L. Kovalev, A.G. Seferyan, 2012, published in Korroziya: Materialy, Zashchita, 2012, No. 11, pp. 31–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rakoch, A.G., Gladkova, A.A., Kovalev, V.L. et al. The mechanism of formation of composite microarc coatings on aluminum alloys. Prot Met Phys Chem Surf 49, 880–884 (2013). https://doi.org/10.1134/S2070205113070125

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205113070125

Keywords

Navigation