Skip to main content
Log in

Formation of bioactive anticorrosion coatings on resorbable implants by plasma electrolytic oxidation

  • Protective Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Calcium phosphate coatings (Ca/P = 1.61) containing magnesium oxide MgO and hydroxyapatite Ca10(PO4)6(OH)2 accelerating the growth of bone tissue have been prepared by the method of plasma electrolytic oxidation (PEO) on MA8 magnesium alloy. The phase and element compositions, morphology, and anticorrosion properties of coatings were investigated. Such PEO layers were found to essentially reduce the corrosion rate of magnesium alloy (polarization resistance being increased by two orders). This makes it possible to consider the formed PEO coatings as likely anticorrosion layers for medical bioresorbable implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng, R.C., Dietzel, W., Witte, F., et al., Progress and challenge for magnesium alloys as biomaterials, Adv. Eng. Mater, 2008, vol. 10, no. 8, pp. B3–B14.

    Article  CAS  Google Scholar 

  2. Carboneras, M., Garcia-Alonso, M.C., and Escudero, M.L., Biodegradation kinetics of modified magnesium-based materials in cell culture medium, Corros. Sci., 2011, vol. 53, pp. 1433–1439.

    Article  CAS  Google Scholar 

  3. Hiromoto, S., Shishido, T., Yamamoto, A., et al., Precipitation control of calcium phosphate on pure magnesium by anodization, Corros. Sci., 2008, vol. 50, pp. 2906–2913.

    Article  CAS  Google Scholar 

  4. Tan, L.L., Wang, Q., Geng, F., et al., Preparation and characterization of Ca-P coatings on AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China, 2010, vol. 20, pp. 648–654.

    Article  CAS  Google Scholar 

  5. Lee, D., Sfeir, Ch., and Kuneta, P., Novel in-situ synthesis and characterization of nanostructured magnesium substituted [beta]-tricalcium phosphate ([beta]-TCMP), Mater. Sci. Eng., C, 2009, vol. 29, pp. 69–77.

    Article  CAS  Google Scholar 

  6. Tomazawa, M., Hiromoto, S., and Yoshimoto, H., Microstructure of hydroxyapatite-coated magnesium prepared in aqueous solution, Surf. Coat. Technol, 2010, vol. 204, pp. 3243–3247.

    Article  Google Scholar 

  7. Kuzukawa, K., Jpn Patent 202782 (A), 2007.

  8. Yao, Zh., Li, L., and Jiang, Zh., Adjustment of the ratio of Ca/P in the ceramic coating on Mg alloy by plasma electrolytic oxidation, Appl. Surf. Sci., 2009, vol. 255, pp. 6724–6728.

    Article  CAS  Google Scholar 

  9. Shrinivasan, P.B., Liang, J., Blawert, C., et al., Characterization of calcium containing plasma electrolytic oxidation coatings on AM50 magnesium alloy, Appl. Surf. Sci., 2010, vol. 256, pp. 4017–4022.

    Article  Google Scholar 

  10. Purnama, A., Hermawan, H., Couet, J., and Mantovani, D., Assessing the biocompability of degradable metallic materials; state-of-art and focus of the potential of genetic regulation, Acta Biomater., 2010, vol. 6, pp. 1800–1807.

    Article  CAS  Google Scholar 

  11. Gu, X.N. and Zheng, Y.F., A review on magnesium alloys as biogradable materials, Front. Mater. Sci. China, 2010, vol. 4, no. 2, pp. 111–115.

    Article  Google Scholar 

  12. Gnedenkov, S.V., Khrisanfova, O.A., Sinebryukhov, S.L., RF Patent 2348744, 2009.

  13. Gnedenkov, S.V., Sharkeev, Yu.P., Sinebryukhov, S.L., et al., Calcium phosphate bioactive coatings on titanium, Vestnik DVO RAN, 2010, no. 5, pp. 47–57.

    Google Scholar 

  14. Gnedenkov, S.V., Khrisanfova, O.A., Zavidnaya, A.G., et al., PEO coatings obtained on an Mg-Mn type alloy under unipolar and bipolar modes in silicate-containing electrolytes, Surf. Coat. Technol, 2010, vol. 204, nos. 14–15, pp. 2316–2322.

    Article  CAS  Google Scholar 

  15. Gnedenkov, S.V., Khrisanfova, O.A., Sinebryukhov, S.L., et al., Composition protective coatings on titanium nickelide surface, Korroz.: Mater., Zashch., 2007, no. 2, pp. 20–25.

    Google Scholar 

  16. Sun, P., Lu, Y., Yuan, Y., et al., Preparation and characterization of duplex peo/moc coatings on Mg alloy, Surf. Coat. Technol, 2011, vol. 205, pp. 4500–4506.

    Article  CAS  Google Scholar 

  17. Gnedenkov, S.V., Khrisanfova, O.A., and Zavidnaya, A.G., Plazmennoe elektroliticheskoe oksidirovanie metallov i splavov v tartratsoderzhashchikh rastvorakh (Plasma Electrolytic Oxidation of Metals and Alloys in Tartrate Containing Solutions, Vladivostok: Dal’nauka, 2008.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gnedenkov.

Additional information

Original Russian Text © S.V. Gnedenkov, S.L. Sinebryukhov, O.A. Khrisanfova, A.G. Zavidnaya, V.S. Egorkin, A.V. Puz’, V.I. Sergienko, 2012, published in Korroziya: Materialy, Zashchita, 2012, No. 10, pp. 38–43.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnedenkov, S.V., Sinebryukhov, S.L., Khrisanfova, O.A. et al. Formation of bioactive anticorrosion coatings on resorbable implants by plasma electrolytic oxidation. Prot Met Phys Chem Surf 49, 874–879 (2013). https://doi.org/10.1134/S2070205113070071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205113070071

Keywords

Navigation