Skip to main content
Log in

Thermodynamics of nanostructured materials

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Published data on the influence of the effective nanoparticle size and the atomicity of clusters on the physicochemical properties of substances are considered. An interpretation is suggested for the analytical relations of the first and second laws of thermodynamics considered with conversion of the substance and the dependence of the chemical potential of reagents on the effective nanoparticle size taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gerasimov, Ya.I., Dreving, V.M., Eremin, E.N., et al., Kurs fizicheskoi khimii (The Course of Physical Chemistry), Moscow: Goskhimizdat, 1963, vol. 1, p. 624.

    Google Scholar 

  2. Prigozhin, I. and Kondepudi, D., Sovremennaya termodinamika (ot teplovykh dvigatelei do dissipativnykh struktur) (Modern Thermodynamics: from Heat Engines to Dissipative Structures, Moscow: Mir, 2009.

    Google Scholar 

  3. Shcherbakov, L.M., Dokl. Akad. Nauk SSSR, 1966, vol. 168, no. 2, p. 388.

    CAS  Google Scholar 

  4. Vigdorovich, V.I., Abstracts of Papers, Sb. nauchn. dokl. XVI Mezhdunarodnoi nauchno-prakticheskoi konf. “Povyshenie effektivnosti ispol’zovaniya resursov pri proizvodstve sel’skokhozyaistvennoi produktsii — novye tekhnologii i tekhnika novogo pokoleniya dlya rastenievodstva i zhivotnovodstva” (Proc. 16th Int. Research and Practice Conf. “Enhancement of the Efficiency of the Use of Resources in the Production of Agricultural Products: New Technologies and New-Generation Equipment for Plant Growing and Animal Husbandry”), Tambov, 2011, p. 347.

  5. Vigdorovich, V.I., Tsygankova, L.E., and Osetrov, A.Yu., Prot. Met. Phys. Chem. Surf., 2011, vol. 47, no. 3, p. 410.

    Article  CAS  Google Scholar 

  6. Shcherbakov, L.M., Kolloidn. Zh., 1961, vol. 23, no. 2, p. 215.

    CAS  Google Scholar 

  7. Shcherbakov, L.M. and Rykov, V.I., Kolloidn. Zh., 1961, vol. 23, no. 2, p. 221.

    Google Scholar 

  8. Sredzievskii, B., Zh. Russk. Fiz-Khim. Obshch., Fiz., 1883, vol. 15, no. 1, p. 39.

    Google Scholar 

  9. Helmholtz, R., Ann. Phys. (New York), 1886, vol. 27, no. 5, p. 508.

    Google Scholar 

  10. Strebeiko, P.E. O vliyanii izmel’cheniya na temperaturu perekhoda (On the Effect of Grinding on the Transition Temperature, Moscow: Inst. Obshch. i Neorg. Khim. Acad. Nauk SSSR, 1939.

    Google Scholar 

  11. Hill, T.L., J. Chem. Phys., 1962, vol. 36, p. 3182.

    Article  CAS  Google Scholar 

  12. Landau, L.D. and Lifshits, E.M., Statisticheskaya fizika (Statistical Physics), Moscow: Fizmatgiz, 1964.

    Google Scholar 

  13. Rusanov, A.I., Termodinamika poverkhnostnykh yavlenii (Thermodynamics of Surface Phenomena), Leningrad: Khimiya, 1960.

    Google Scholar 

  14. Shcherbakov, L.M., Samsonov, V.M., and Novoselov, A.R., Zh. Fiz. Khim., 1991, vol. 65, no. 2, p. 459.

    CAS  Google Scholar 

  15. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibriums and Surface Phenomena), Leningrad: Khimiya, 1967.

    Google Scholar 

  16. Shi, F., J. Mater. Res., 1994, vol. 9, no. 10, p. 1307.

    Article  CAS  Google Scholar 

  17. Sergeev, G.B., Nanokhimiya (Nanochemistry), Moscow: Izd. Mosk. Univ., 2007.

    Google Scholar 

  18. Kreibig, U. and Volmer, M., Optical Properties of Metal Clusters, Berlin: Springer-Verlag, 1995.

    Google Scholar 

  19. Lidorenko, N.S., Chizhik, S.P., Gladkikh, N.P., et al., Dokl. Akad. Nauk SSSR, 1981, vol. 257, no. 5, p. 1114.

    CAS  Google Scholar 

  20. Vashkyalis, A.Yu., Elektrokhimiya, 1978, vol. 14, no. 12, p. 1770.

    Google Scholar 

  21. Kravchenko, T.A., Polyanskii, L.N., Elanichev, A.I., and Konev, D.V., Nanokompozity metall-ionoobmennik (Metal-Ion Exchanger Nanocomposites), Moscow: Nauka, 2009.

    Google Scholar 

  22. Sidnin, A.I. and Sheberstov, V.I., Zh. Nauchn. Prikl. Fotogr. Kinematogr., 1983, vol. 28, no. 1, p. 7.

    CAS  Google Scholar 

  23. Tur’yan, Ya.I., Okislitel’no-vosstanovitel’nye reaktsii i potentsialy v analiticheskoi khimii (Redox Reactions), Moscow: Khimiya, 1989.

    Google Scholar 

  24. Spravochnik khimika (Chemist’s Handbook), Nikol’skii, B.P., Ed., Leningrad: Khimiya, 1965, vol. 3, ed. 2.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vigdorovich.

Additional information

Original Russian Text © V.I. Vigdorovich, L.E. Tsygankova, 2012, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2012, Vol. 48, No. 5, pp. 415–421.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vigdorovich, V.I., Tsygankova, L.E. Thermodynamics of nanostructured materials. Prot Met Phys Chem Surf 48, 501–507 (2012). https://doi.org/10.1134/S2070205112050152

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205112050152

Keywords

Navigation