Skip to main content
Log in

Microstructure and corrosion resistance of molybdenum and aluminum coatings thermally sprayed on 7075-T6 aluminum alloy

  • Physicochemical Problems of Materials Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

Pitting corrosion upon 7075-T6 high strength aluminum alloy, often associated with cathodic intermetallic particles decreases its fatigue life by a factor of about 6 to 8. In order to improve the corrosion resistance of this alloy, arc spray coatings of molybdenum and aluminum are applied. The open circuit potential and potentiodynamic polarization measurements made in 3.5% NaCl naturally aerated solution reveal that the molybdenum coating, which has an excellent hardness, shifts the 7075-T6 corrosion potential (E corr) to noble values and increases slightly the corrosion current density (i corr). On the contrary, when the aluminum coating alloy is applied, both E corr and i corr are shifted to better values. The increase of i corr of the alloy when molybdenum coating is applied can be attributed to the high porosity present into the coating. On the other hand, microstructure observations of the aluminum coating reveal a small porosity, which helps the formation of passive oxide film that protects the coating against a further corrosion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamp, N., Sinclair, I., and Starink, M.J., Metallurgical and Mater. Transactions A, 2002, vol. 33A, p. 1125.

    Article  CAS  Google Scholar 

  2. Li, X.M. and Starink, M.J., Mater. Sci. and Technology, 2001, vol. 17, no. 11, p. 1324.

    CAS  Google Scholar 

  3. Chen, K.H., Liu, H.W., Zhang, Z. et. al., J. Mater. Proc. Technology, 2003, vol. 142, no. 1, p. 190.

    Article  CAS  Google Scholar 

  4. Mondal, C. and Mukhopadhyay, A.K., Mater. Sci. Engineering A, 2005, vol. 391, no. 1–2, p. 367.

    Article  Google Scholar 

  5. Xie, F.Y., Yan, X.Y., Ding, L. et al., Mater. Sci. Engineering A, 2003, vol. 355, no. 1–2, p. 144.

    Article  Google Scholar 

  6. Chen, G.S., Gao, M., and Wie, R.P., Corrosion, 1996, vol. 52, no. 1, p. 8.

    Article  CAS  Google Scholar 

  7. Wei, R.P., Liao, C.M., and Gao, M., Metall. and Mat. Trans. A, 1998, vol. 29A, p. 1153.

    Article  CAS  Google Scholar 

  8. Puiggali, M., Zielinski, A., Olive, J.M. et al., Corrosion Sci., 1998, vol. 40, no. 4–5, p. 805.

    Article  CAS  Google Scholar 

  9. Birbilis, N., Cavanaugh, M.K., and Buchheit, R.G., Corrosion Sci., 2006, vol. 48, p. 4202.

    Article  CAS  Google Scholar 

  10. Huchin, J.P., Proc. of the 15th Int. Thermal Spray Conf. Nice., 1998, p. 925.

  11. Ducos, M. and Durand, J.P., Proc. of the Int. Thermal Spray Conf. Singapore, 2001, p. 1267.

  12. Davis, J.R., Handbook of Thermal Spray Technology, ASM International. Materials Park. OH, USA, 2004, p. 175.

  13. Fauchais, P., Nardelle, A., and Dussoubs, B., J. Thermal Spray Technology, 2001, vol. 10, no. 1, p. 44.

    Article  CAS  Google Scholar 

  14. Bradai, M.A., Braccini, M., Ati, A. et al., Surface and Coatings Technology, 2008, vol. 202, p. 4538.

    Article  CAS  Google Scholar 

  15. Hwang, B., Ahn, J., and Lee, S., Surface and Coating Technology, 2005, vol. 194, no. 2–3, p. 256.

    Article  CAS  Google Scholar 

  16. Laribi, M., Vannes, A.B., and Treheux, D., Wear., 2007, vol. 262, p. 1330.

    Article  CAS  Google Scholar 

  17. Iordanova, I., Surtchev, M., and Forcey, K.S., Surface and Coatings Technology, 2001, vol. 139, no. 2–3, p. 118.

    Article  CAS  Google Scholar 

  18. Campo, M., Carboneras, M., Lopez, M.D. et al., Surface and Coating Technology, 2009, vol. 203, p. 3224.

    Article  CAS  Google Scholar 

  19. Carboneras, M., Lopez, M.D., Torres, B. et al., Corrosion Sci., 2010, vol. 52, p. 761.

    Article  CAS  Google Scholar 

  20. Byoungchul, H., Jeehoon, A., and Sunghak, L., Surface and Coatings Technology, 2005, vol. 194, p. 256.

    Article  Google Scholar 

  21. Gedzevicius, I. and Valiulis, A.V., J. Mater. Proc. Technology, 2006, vol. 175, p. 206.

    Article  CAS  Google Scholar 

  22. Newbery, A.P. and Grant, P.S., J. Mater. Proc. Technology, 2006, vol. 178, p. 259.

    Article  CAS  Google Scholar 

  23. Rodriguez, R.M.H.P., Paredes, R.S.C., Wido, S.H., and Calixto, A., Surface and Coatings Technology, 2007, vol. 202, p. 172.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Naimi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naimi, A., Yousfi, H. & Trari, M. Microstructure and corrosion resistance of molybdenum and aluminum coatings thermally sprayed on 7075-T6 aluminum alloy. Prot Met Phys Chem Surf 48, 557–562 (2012). https://doi.org/10.1134/S2070205112050061

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205112050061

Keywords

Navigation