Skip to main content
Log in

On electrocontact oxidation of iron nanocondensates

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The transformation (under the effect of current passed) of a nanostructured metal-oxide coating produced by vacuum deposition of iron in an oxygen atmosphere at a pressure of 10−4 mm Hg on an amorphous glass substrate is studied by measuring voltammetric characteristics. In the freshly deposited film, a linear characteristic is observed that may correspond to direct quantum mechanical tunneling in thin oxide interlayers between metal nanograins. With an increase in the applied current density, when a certain threshold is reached, the conductivity of the conductor rapidly drops because of the thermo- and electrooxidation. In a degraded conductor at a prethreshold current density, a nonlinear voltammetric characteristic is observed, which may be related to the change in the mechanism of current flow restricted by the volume charge, as well as to the negative temperature resistance coefficient typical of fine-crystalline granular nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Suzdalev, I.P., Nanotekhnologiya: fizikokhimiya nanoklasterov, nanostruktur i nanomaterialov (Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures, and Nanomaterials), Moscow: KomKniga, 2006.

    Google Scholar 

  2. Vayssieres, L., Hagfeldt, A., and Lindquist, S.E., Pure Appl. Chem., 2000, vol. 72, p. 47.

    Article  CAS  Google Scholar 

  3. Syugaev, A.V., Lomaeva, S.F., Maratkanova, A.N., et al., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 1, p. 81.

    CAS  Google Scholar 

  4. Efimova, I.G., Ziganshin, M.A., Gorbachuk, V.V., et al., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 5, p. 525.

    CAS  Google Scholar 

  5. Kotenev, V.A., Tyurin, D.N., Tsivadze, A.Yu., et al., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 5, p. 616.

    CAS  Google Scholar 

  6. Kotenev, V.A., Zimina, T.Yu., Andreeva, N.P., and Zimin, P.A, Fiz. Khim. Obrab. Mater., 1999, no. 4, p. 45.

  7. Thin Films: Interdiffusion and Reactions, Poate, J.M., Tu, K.N., and Mayer, J.W., Eds., New York: Wiley, 1978.

    Google Scholar 

  8. Chopra, K.L., Thin Film Phenomena, New York: McGraw-Hill, 1969.

    Google Scholar 

  9. Kotenev, V.A, Tyurin, D.N., Tsivadze, A.Yu., et al., Protection of Metals, 2008, vol. 44, no. 6, p. 589.

    Article  CAS  Google Scholar 

  10. Kotenev, V.A., Tyurin, D.N, Tsivadze, A.Yu., et al., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 6, p. 704.

    CAS  Google Scholar 

  11. Strikha, V.I. and Buzaneva, E.V., Fizicheskie osnovy nadezhnosti kontaktov metall-poluprovodnik v integral’noi elektronike (Physical Principles of Reliable Metal-Semiconductor Contacts in Integral Electronics), Moscow: Radio i Svyaz’, 1987.

    Google Scholar 

  12. Koleshko, V.M. and Belitskii, V.F., Massoperenos v tonkikh plenkakh (Mass Transfer in Thin Films), Minsk: Nauka i Tekhnika, 1980.

    Google Scholar 

  13. Kennedy, J.H. and Anderman, M., J. Electrochem. Soc., 1983, vol. 130, p. 848.

    Article  CAS  Google Scholar 

  14. Chauhan, P., Annapoorni, S., and Trikha, S.K., Thin Solid Films, 1999, vol. 346, p. 266.

    Article  CAS  ADS  Google Scholar 

  15. Ohmori, T., Takahashi, H., Mametsuka, H., and Suzuki, E., Phys. Chem. Chem. Phys., 2000, vol. 2, p. 3519.

    Article  CAS  Google Scholar 

  16. Weiss, W., Zscherpel, D., and Schlogl, R., Catal. Lett., 1998, vol. 52, p. 215.

    Article  CAS  Google Scholar 

  17. Kofstad, P., High-Temperature Oxidation, London: Elsevier, 1988.

    Google Scholar 

  18. Kotenev, V.A. and Tsivadze, A.Yu., Protection of Metals and Physical Chemistry of Surfaces, 2009, vol. 45, no. 4, p. 472.

    CAS  Google Scholar 

  19. Kotenev, V.A., Kiselev, M.R., Zolotarevskii, V.I., et al., Protection of Metals and Physical Chemistry of Surfaces, 2011, in press.

  20. Mott, N.F. and Gurney, R.W., Electronic Processes in ionic Crystals, Oxford: Clarendon, 1948.

    Google Scholar 

  21. Dankov, P.D. and Churaev, P.V., Dokl. Akad. Nauk SSSR, 1950, vol. 73, p. 1221.

    CAS  Google Scholar 

  22. Hauffe, K., Reactions in and on Solids, Berlin: Springer, 1955.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kotenev.

Additional information

Original Russian Text © V.A. Kotenev, V.V. Vysotskii, M.R. Kiselev, V.I. Zolotarevskii, A.Yu. Tsivadze, 2010, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2010, Vol. 46, No. 6, pp. 611–615.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kotenev, V.A., Vysotskii, V.V., Kiselev, M.R. et al. On electrocontact oxidation of iron nanocondensates. Prot Met Phys Chem Surf 46, 681–685 (2010). https://doi.org/10.1134/S2070205110060092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205110060092

Keywords

Navigation