Skip to main content
Log in

Effect of nanostructured surface of radiation-oxidized aluminum on radiolytic processes in n-hexane

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The effect of a nanostructured surface of radiation-oxidized aluminum on radiolytic processes in n-hexane was investigated. It was ascertained that the decreased thickness of oxide films on Al surface by approximately two orders of magnitude (from 600 to 8 nm) led to an increase in the rate of molecular hydrogen formation by a factor of ∼7 (from 1.1 to 7.6 × 1015 molecule g−1 s−1); meanwhile, the radiation chemical yield of H2 changed from 4.3 to 8.2 molecules/100 eV. The results obtained were interpreted in terms of the difference in the degree of imperfection of the surfaces of radiation-generated Al plates and enhancement of radiation-generated centers, which was evidenced by AFM images and RTL measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kislyuk, M.U., Kinet. Katal., 1998 vol. 39, no. 2, p.246 [Kinet. Catal. (Engl. Transl.) vol. 39, no. 2, p.229].

    Google Scholar 

  2. Avdeev, V.I. and Zhidomirov, G.M., Kinet. Katal., 1994 vol. 35, no. 2 [Kinet. Catal. (Engl. Transl.) vol. 35, no. 2].

  3. Nechaev, E.A., Khemosorbtsiya organicheskikh veshchestv na oksidakh i metallakh (Chemisorption of Organic Compounds on Oxides and Metals), Kharkov: Vishcha shkola, 1989, p.144.

    Google Scholar 

  4. Brand, J.L., Arena, M.V., and Deckert, A.A., J. Chem. Phys., 1990 vol. 92, no. 8, p.5136.

    Article  CAS  ADS  Google Scholar 

  5. Gadzhieva, N.N., Book of Abstracts, Mezhdunarodnaya konferentsiya “Fiziko-khimicheskie protsessy v neorganicheskikh materialakh” (Int. Conf. “Phys.-Chem. Processes in Inorg. Mater.”), Kemerovo, 2007 vol. 1, p.23.

    Google Scholar 

  6. Gadzhieva, N.N., Rimikhanova, A.N., and Garibov, A.A., Zh. Fiz. Khim., 2007 vol. 81, no. 5, p.915 [Russ. J. Phys. Chem. (Engl. Transl.) vol. 81, no. 5, pp. 794–797].

    Google Scholar 

  7. Gadzhieva, N.N., Zh. Prikl. Spektrosk., 2005 vol. 72, no. 4, p.440.

    Google Scholar 

  8. Gadzhieva, N.N., Zashch. Met., 2007 vol. 43, no. 4, p.413.

    Google Scholar 

  9. Gadzhieva, N.N, Rimikhanova, A.N., Garibov A.A., et al., Vopr. Atom. Nauki Tekhn., Ser. Fiz. Rad. Povrezhd. Rad. Mater., 2007 vol. 6, p.36.

    Google Scholar 

  10. Buchachenko, A.L., Usp. Khim., 2003 vol. 72, no. 5, p.419.

    Google Scholar 

  11. Dalidchik, F.I., Kovalevskii, S.A., and Shub, B.R., Usp. Khim., 2001 vol. 70, no. 8, p.715.

    Google Scholar 

  12. Gadzhieva, N.N., Proc, 4th Int. Conf. on Nuclear and Radiation Physics, 2003, Almaty, Kazakhstan, p.34.

  13. Gadzhieva, N.N. and Rimikhanova, A.N., Fiz. Khim. Obra. Mater., 2007, no. 6, p.27.

  14. Strohmeier, B.R., Surf. Interf. Anal, 1990 vol. 15, p.51.

    Article  CAS  Google Scholar 

  15. Kotenev, V.A., Zashch. Met., 2000 vol. 36, no. 4, p.405.

    Google Scholar 

  16. Pikaev, A.K., Dozimetriya v radiatsionnoi khimii (Dosimetry in Radiation Chemistry), Moscow: Nauka, 1975, p.120.

    Google Scholar 

  17. Strel’ko, V.V., Shvets, D.I., Kartel’, N.T et al., Radiatsionno-khimicheskie protsessy v geterogennykh sistemakh na osnove dispersnykh okislov (Radiation Chemical Processes in Heterogeneous Systems Based on Dispersed Oxides), Moscow: Energoizdat, 1981.

    Google Scholar 

  18. Sorokin, S.I. and Davydov, D.A., Vopr. Atom. Nauki Tekhn., Ser. Termoyad. Sintez, 2002, nos. 3–4, p.102.

  19. Krylov, O.V. and Kiselev, V.F., Adsorbtsiya i kataliz na perekhodnykh metallakh i ikh oksidakh (Adsorption and Catalysis on Transition Metals and Their Oxides), Moscow: Khimiya, 1981, p.165.

    Google Scholar 

  20. Krylov, O.V. and Shub, R., Neravnovesnye protsessy v katalize (Nonequilibrium Processes in Catalysis), Moscow: Khimiya, 1981, p.204.

    Google Scholar 

  21. Grishin, M.V., Dalidchik, F.I., Kovalevskii, S.A., and Kolchenko, N.N., Pis’ma Zh. Eksp. Teor. Fiz., 2007 vol. 71, p.104.

    Google Scholar 

  22. Brans, H., Witterlin, J., and Trost, J., J. Chem. Phys., 1993 vol. 99, p.2128.

    Article  ADS  Google Scholar 

  23. Magomedov, M.N.O., Fiz. Tverd. Tela, 1994 vol. 47, no. 5, p.1441.

    Google Scholar 

  24. Smirnov, M.Yu. and Gorodetskii, V.V., Poverkh. Fiz. Khim. Mekh., 1986 vol. 7, p.21.

    Google Scholar 

  25. Raikh, T., Yarzhemskii, V.G., Nefedov, V.I., et al., Poverkh. Fiz. Khim. Mekh., 1988 vol. 4, p.49.

    Google Scholar 

  26. Konobeevskii, S.T., Deistvie oblucheniya na materialy. Vvedenie v radiatsionnoe materialovedenie (Effect of Radiation on Materials. Introduction into Radiation Material Science), Moscow: Atomizdat, 1967, p.104.

    Google Scholar 

  27. D’erd’, S., Ishtvan, D., Magda, R., and Laslo, V., Radiatsionnaya khimiya uglevodorodov (Radiation Chemistry of Hydrocarbons), Moscow: Nauka, 1986, p.48.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Gadzhieva.

Additional information

Original Russian Text © N.N. Gadzhieva, 2010, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2010, Vol. 46, No. 2, pp. 190–194.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gadzhieva, N.N. Effect of nanostructured surface of radiation-oxidized aluminum on radiolytic processes in n-hexane. Prot Met Phys Chem Surf 46, 222–226 (2010). https://doi.org/10.1134/S2070205110020097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205110020097

Keywords

Navigation