Skip to main content
Log in

Nanochemistry and supramolecular chemistry of actinides and lanthanides: Problems and prospects

  • Modern Problems of Physical Chemistry of Surfaces, Material Science and Protection
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The possibility of using unique properties of lanthanides in the nanotechnology is demonstrated. The origination of linear and nonlinear optical properties of lanthanide compounds with phthalocyanines, porphyrins, naphthalocyanines, and their analogs in solutions and condensed state and the prospects of obtaining novel materials on their basis are discussed. Based on the electronic structure and properties of lanthanides and their compounds, namely, optical and magnetic characteristics, electronic and ionic conductivity, and fluctuating valence, molecular engines are classified. High-speed storage engines or memory storage engines; photoconversion molecular engines based on Ln(II) and Ln(III); electrochemical molecular engines involving silicate and phosphate glasses; molecular engines whose operation is based on insulatorsemiconductor, semiconductor-metal, and metal-superconductor types of conductivity phase transitions; solid electrolyte molecular engines; and miniaturized molecular engines for medical analysis are distinguished. It is shown that thermodynamically stable nanoparticles of Ln x M y composition can be formed by d elements of the second halves of the series, i.e., those arranged after M = Mn, Tc, and Re. Prospects of using lanthanide superconductors in nanotechnology are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Poole, C.P., Jr. and Owen, F.J., Introduction to Nanotechnology, New York: Wiley, 2003.

    Google Scholar 

  2. Alfimov, M.V., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 13.

    Google Scholar 

  3. Tsivadze, A.Yu., Ionova, G.V., Mikhalko, V.K., and Kostrubov, Yu.N., Usp. Khimii, 2007, vol. 76, p. 237.

    Google Scholar 

  4. Tsivadze, A.Yu., Ionova, G.V., Mikhalko, V.K., and Kostrubov, Yu.N., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 73.

    Google Scholar 

  5. Covington, A., Calabrese, D., and Thompson, J., J. Phys. B, 1997, p. L855.

  6. Bercovits, D., Instr. Methods Phys. Res. B, 1997, vol. 123, p. 515.

    Article  ADS  Google Scholar 

  7. Lineberger, W.C., J. Phys. Ref. Data, 1985, vol. 14, p. 731.

    ADS  Google Scholar 

  8. Efimov, A.I., Spravochnik neorganicheskikh soedinenii (Handbook of Inorganic Compounds), Leningrad: Khimiya, 1983.

    Google Scholar 

  9. Rienstra-Kirasofe, J.C., Tschuumper, S., and Schaefer, H., Chem. Rev., 2002, vol. 102, p. 231.

    Article  Google Scholar 

  10. Ionova, G., Mikhalko, V., and Kostrubov, Yu., Int. Conf. Nancy, France, 2003, p. 13.

  11. Ionova, G.V., Mikhalko, V.K., Gerasimova, G.A., and Suraeva, N.I., Zh. Neorg. Khimii, 2003, vol. 48, p. 1885.

    Google Scholar 

  12. Moore, C., Atomic energy levels. National Bureau of Standards (US), Circ. no. 467, Washington, 1952, vols. 1–3.

  13. Brewer, L., J. Opt. Soc. Am. B: Opt. Phys., 1971, vol. 61, pp. 1101, 1666.

    Article  CAS  ADS  Google Scholar 

  14. Massey, H., Negative Ions, London: Cambridge University Press, 1976.

    Google Scholar 

  15. Garwan, M.A., Zhao, X.L., Nadeau, M.J., et al., Bull. Am. Phys. Soc., 1992, vol. 37, p. 1148.

    Google Scholar 

  16. Bratsch, S., Chem. Phys. Lett., 1983, vol. 98, p. 113.

    Article  CAS  ADS  Google Scholar 

  17. Eliav, E. and Kaldor, U., Phys. Rev. A, 1994, vol. 52, p. 291.

    Article  ADS  Google Scholar 

  18. Ionova, G., NRC5 Int. Conf. Ext. Abstracts, Switzerland, 2000, p. 98.

  19. Ionova, G.V., Vokhmin, V.G., and Spitsyn, V.I., Zakonomernosti izmeneniya svoistv lantanidov i aktinidov (Regular Changes in the Properties of Lanthanides and Actinides), Moscow: Nauka, 1990.

    Google Scholar 

  20. Springer Handbook of Nanotechnology, Bushan, B., Ed., New York: Springer, 2004.

    Google Scholar 

  21. Handbook of Nanophase and Nanostructured Materials: Materials Systems and Applications, Wang, Z.L., Liu Y., and Zhang Z., Eds., New York: Kluwer, 2002.

    Google Scholar 

  22. Schmid, D., Eur. J. Inorg. Chem, 2003, p. 3081.

  23. Li, X., Wu, H., and Wang, X., Phys. Rev. Lett., 1998, vol. 81, p. 1909.

    Article  CAS  ADS  Google Scholar 

  24. Wu, H., Wang, X., and Desai, S., Phys. Rev. Lett., 1998, vol. 76, p. 212.

    Article  ADS  Google Scholar 

  25. Wang, L., Wang, X., and Wu, H., J. Am. Chem. Soc., 1998, vol. 120, p. 6556.

    Article  CAS  Google Scholar 

  26. Wang, L., Wu, H., and Cheng, H., Phys. Rev. B, 1997, vol. 55, p. 12884.

    Article  CAS  ADS  Google Scholar 

  27. Wang, L. and Cheng, H., J. Chem. Phys., 1995, vol. 102, p. 9480.

    Article  CAS  ADS  Google Scholar 

  28. Wang, L. and Wu, H., Advances in Metals and Semiconductor Clusters, Greenwich: JAI, 1998, vol. 4.

    Google Scholar 

  29. Wang, L. and Wu., H, Z. Phys. Chem., 1998, vol. 203, p. 45.

    CAS  Google Scholar 

  30. Hume-Rothery, W., Acta Metall., 1965, vol. 13, p. 1039.

    Article  CAS  Google Scholar 

  31. Brooks, M.S.S., Johansson, B., and Scriver, H.L., in Handbook on the Physics and Chemistry of the Actinides, Freeman, A.J. and Lander, G.H., Eds., North-Holland, 1984, vol. 1, p. 154.

  32. Fournier, J.M. and Manes, L., Structure and Bonding, 1985, vols. 59–60, p. 1.

    Article  Google Scholar 

  33. Clark, D., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 6.

    Google Scholar 

  34. Ackermann, R. and Rauh, E., J. Inorg. Nucl. Chem., 1973, vol. 35, p. 3787.

    Article  CAS  Google Scholar 

  35. Haire, R.G. and Eyring, L., in Handbook on Physics and Chemistry, Gschneidner, K.A., Eyring, L., Choppin, G., and Lander, G.H, Eds., 1994, vol. 18, p. 414.

  36. Roberts, R. and Walter, A., Physico-Chimie du Pa, Orsay, 1965, p. 51.

  37. Stcyouzkoy, T., C. R. Acad. Sci. (Paris), 1964, vol. 259, p. 3016.

    Google Scholar 

  38. Wiegel, F., in The Chemistry of Actinide Elements, Katz, J., Ed., New York: Chapman, 1986, p. 169.

    Google Scholar 

  39. Zachariasen, W.H., Acta Cryst, 1949, vol. 2, p. 388.

    Article  CAS  Google Scholar 

  40. Schultz, W., The Chemistry of Am, Report TID 26971 (ERDA, Oak Ridge), 1976

  41. Cunningham, B. and Wallmann, J., J. Inorg. Nucl. Chem., 1964, vol. 26, p. 271.

    Article  CAS  Google Scholar 

  42. Fahey, J., Paterson, J., and Baybarz, R., J. Inorg. Nucl. Chem., 1972, vol. 8, p. 101.

    Article  CAS  Google Scholar 

  43. Mikheev, N.B., Zh. Neorg. Khimii, 2002, vol. 47, p. 588.

    CAS  Google Scholar 

  44. Morss, L., in Chemistry of Actinide Elements, Katz, J.J., Seaborg, G., and Morss, L., Eds., New York: Chapman and Hall, 1986, vol. 1, p. 1278.

    Google Scholar 

  45. Robin, M. and Day, P., Adv. Inorg. Radiochemistry, 1967, vol. 10, p. 248.

    Google Scholar 

  46. Krot, N.N., Gel’man, A.D., Mefod’eva, M.P., et al., Semivalentnoe sostoyanie urana, neptuniya, ameritsiya (Heptavalent State of Uranium, Neptunium, and Americium), Moscow: Nauka, 1977.

    Google Scholar 

  47. Noguera, C., Physics and Chemistry at Oxide Surfaces, Cambridge: Cambridge University Press, 1996.

    Book  Google Scholar 

  48. Henrich, V.E. and Cox, P.A., The Surface Chemistry of Metal Oxides, Cambridge: Cambridge University Press, 1994.

    Google Scholar 

  49. Leger, J., Solid State Commun., 1981, vol. 36, p. 261.

    Article  CAS  Google Scholar 

  50. Haschke, J. and Eick, H., J. Phys. Chem., 1969, vol. 73, p. 374.

    Article  CAS  Google Scholar 

  51. Fishel, N., Haschke, J., and Eick, H., Inorg. Chem., 1970, vol. 9, p. 413.

    Article  CAS  Google Scholar 

  52. Krill, U., Solid State Commun., 1980, vol. 33, p. 351.

    Article  CAS  ADS  Google Scholar 

  53. Ionova, G.V., Zh. Fiz. Khimii, 1980, vol. 54, p. 1112.

    CAS  Google Scholar 

  54. Fernandez-Garsia, M., Martinez-Arias, A., and Hanson, J.C., Chem. Rev., 2004, vol. 104, p. 4063.

    Article  Google Scholar 

  55. Kovba, L.M., Okisly perekhodnykh metallov (Transient Metal Oxides), Moscow: Mosk. Gos. Univ., 1973.

    Google Scholar 

  56. Naito, K., J. Nucl. Mater., 1989, vol. 169, p. 329.

    Article  CAS  ADS  Google Scholar 

  57. Thibaut, E., 2nd Int. Conf. on Electron Structure, 1976, p. 151.

  58. Teterin, Yu., Phys. Chem. Mineral., 1981, vol. 7, p. 151.

    Article  CAS  MathSciNet  ADS  Google Scholar 

  59. Manes, L. and Benedict, U., Structure Bonding, 1985, vols. 59–60, p. 75.

    Article  Google Scholar 

  60. Clark, D., Phys. Today, 2006, vol. 59, p. 34.

    Article  CAS  Google Scholar 

  61. Ionova, G.V. and Kiseleva, A.A., Zh. Neorg. Khimii, 1994, vol. 39, p. 1373.

    CAS  Google Scholar 

  62. Ionova, G.V. and Kiseleva, A.A., Zh. Fiz. Khimii, 1993, vol. 67, pp. 1177, 1489, 1548.

    Google Scholar 

  63. Roesky, H., Haiduc, I., and Hosmane, N., Chem. Rev., 2003, vol. 103, p. 2579.

    Article  CAS  PubMed  Google Scholar 

  64. Recommended Key Values for Thermodynamic Codata, Bull. Paris, 1977, no. 28.

  65. Wagman, D., J. Phys. Chem. Ref. Data, 1982, vol. 11, p. S2.

    Google Scholar 

  66. Ionova, G.V., Pershina, V.G., and Spitsyn, V.I., Elektronnoe stroenie aktinidov (Electronic Structure of Actinides), Moscow: Nauka, 1986.

    Google Scholar 

  67. Ionova, G.V. and Spitsyn, V.I., Effektivnye zaryady v soedineniyakh aktinidov (Effective Charges in Actinide Compounds), Moscow: Nauka, 1989.

    Google Scholar 

  68. Ershov, B.G., Usp. Khim., 1981, vol. 50, p. 2137; 1992, vol. 61, p. 1805; 1997, vol. 66, p. 103.

    CAS  Google Scholar 

  69. Cox, P.A., The Electronic Structure and Chemistry of Solids, Oxford: Oxford Science Publications, 1990.

    Google Scholar 

  70. Lehn, J.-M., Supramolecular Chemistry: Concepts and Perspective, Weinheim: VCH, 1995.

    Google Scholar 

  71. Torre, G., Vazques, P., Agulo-Lopes, F., and Torres, T., Chem. Rev., 2004, vol. 104, p. 3723.

    Article  PubMed  Google Scholar 

  72. Ionova, G., Tzivadze, A.Yu., and Mikhalko, V., Int. Summer School “Supramolecular Systems in Chemistry and Biology,” Abstracts, Russia, Tuapse, 2006, p. 56.

  73. Ionova, G.V., Mikhalko, V.K., Kostrubov, Yu.N., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 5, p. 83.

    Google Scholar 

  74. Ionova, G., Guillaumont, R., Ionov, S., et al., J. Alloys Compd., 1998, vols. 275–277, p. 785.

    Article  Google Scholar 

  75. Landelly, A. and Palenzona, A., in Handbook on Physics and Chemistry of Rare Earths, Gschneidner, K.A. and Eyring, L., Eds., 1979, vol. 18, p. 1.

  76. Falicov, L., Hanke, W., and Maple, M., Valence Fluctuations in Solids, New York: North Holland, 1981.

    Google Scholar 

  77. Donega, C. de M., Ynior, S.A., and Sa, G.F., J. Alloys Compd., 1997, vol. 250, p. 427.

    Article  Google Scholar 

  78. Shen, X.A. and Kastra, R., J. Alloys Compd., 1997, vol. 250, p. 435.

    Article  CAS  Google Scholar 

  79. Moria, M., Isikava, M., and Matsuda, Y., J. Alloys Compd., 1997, vol. 250, p. 524.

    Article  Google Scholar 

  80. Kanno, H. and Akamo, Y., J. Alloys Compd., 1997, vol. 250, p. 528.

    Article  CAS  Google Scholar 

  81. Antonio, M., Soderholm, L., and Ellison, A., J. Alloys Compd., 1997, vol. 250, p. 536.

    Article  CAS  Google Scholar 

  82. Xu, W. and Peterson, J., J. Alloys Compd., 1997, vol. 250, p. 213.

    Article  Google Scholar 

  83. Takano, Y., Ogava, C., and Miyahara, Y., J. Alloys Compd., 1997, vol. 250, p. 221.

    Article  Google Scholar 

  84. Su, M., Liu, S., and Lin, Q., J. Alloys Compd., 1997, vol. 250, p. 229.

    Article  Google Scholar 

  85. Rosenkranz, S. and Trunov, V., J. Alloys Compd., 1997, vol. 250, p. 577.

    Article  CAS  Google Scholar 

  86. Imanaka, N. and Adachi, G., J. Alloys Compd., 1997, vol. 250, p. 492.

    Article  CAS  Google Scholar 

  87. Hemmila, I., Mukkala, V., and Takalo, H., J. Alloys Compd., 1997, vol. 250, p. 158.

    Article  Google Scholar 

  88. Ionova, G.V., Mikhalko, V.K., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 1, p. 234.

    Google Scholar 

  89. Kobayashi, N., Coord. Chem. Rev., 2002, vol. 227, p. 129.

    Article  CAS  Google Scholar 

  90. Kottas, G.S., Clark, L.I., Horinek, D., and Michl, J., Chem. Rev., 2005, vol. 105, p. 1281.

    Article  CAS  PubMed  Google Scholar 

  91. Ionova, G.V., Mikhalko, V.K., Kostrubov, Yu.N., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 2, p. 277.

    Google Scholar 

  92. Ionova, G.V., Mikhalko, V.K., Kostrubov, Yu.N., and Tsivadze, A.Yu., XVIII Mendeleevskii s”ezd po obshchei i prikladnoi khimii. Tezisy dokladoc (XVIII Mendeleev Congr. on General and Applied Chemistry. Theses), Moscow: Granitsa, 2007, vol. 3, p. 176.

    Google Scholar 

  93. Ginzburg, V., Poisk, 2008, p. 978.

  94. Phillips, J.C., Phys. Rev. B, 2007, vol. 75, p. 530.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Mikhalko.

Additional information

Original Russian Text © A.Yu. Tsivadze, G.V. Ionova, V.K. Mikhalko, 2010, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2010, Vol. 46, No. 2, pp. 115–135.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsivadze, A.Y., Ionova, G.V. & Mikhalko, V.K. Nanochemistry and supramolecular chemistry of actinides and lanthanides: Problems and prospects. Prot Met Phys Chem Surf 46, 149–169 (2010). https://doi.org/10.1134/S2070205110020012

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205110020012

Keywords

Navigation