Skip to main content
Log in

Properties of nonpolar fluids inside a carbon nanotube

  • Molecular and Supramolecular Structures at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A simple criterion for the capillary filling of a nanotube with a nonpolar fluid is formulated; The efficient surface tension of the nanotube frame is estimated (∼0.05 N/m). The dynamics of the fluid inside the nanotube is studied. The potential of the atom interaction with nanotube walls is found in a continuous approximation. The conclusion on the boundary slipping of fluid near hydrophobic nanotube walls is made, which explains the experimentally observed superfast flow. Using the Gibbs equation, we derive and solve the differential equation for the dimensional dependence of the interfacial tension of a fluid inside a nanotube under equilibrium conditions. It is shown that a reduction in the nanotube radius leads to a decrease in the interfacial tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogomolov, V.N., Usp. Fiz. Nauk, 1972, vol. 124, no. 1, p. 171.

    Google Scholar 

  2. Ebbesen, T.W., Carbon Nanotubes: Preparation and Properties, Boca Raton, FL: CRC, 1997.

    Google Scholar 

  3. Harris, P.J.F., Carbon Nanotubes and Related Structures, Cambridge: University Press, 1999; Moscow: Tekhnosfera, 2003.

    Book  Google Scholar 

  4. Eletskii, A.V., Usp. Fiz. Nauk, 2004, vol. 174, no. 11, p. 1191.

    Article  Google Scholar 

  5. Vakhrushev, A.V., Lipanov, A.M., and Suetin, M.V., Modelirovanie protsessov akkumulyatsii vodoroda i uglevodorodov nanostrukturami (Simulation of the Processes of Accumulation of Hydrogen and Hydrocarbon by Nanostructures), Moscow, Izhevsk: NITs Regulyarnaya Khaoticheskaya Dinamika, 2008.

    Google Scholar 

  6. Snyder, S.E. and Rotkin, S.V., Pis’ma Zh. Eksp. Teor. Fiz., 2006, vol. 84, no. 6, p. 411 [JETP Lett. (Engl. Transl.), vol. 84, no. 6, p. 348].

    Google Scholar 

  7. Fedorov, A.S. and Sorokin, P.B., Fiz. Tverd. Tela, 2006, vol. 48, no. 2, p. 377 [Phys. Solid State (Engl. Transl.), vol. 48, no. 2, p. 402].

    Google Scholar 

  8. Tomilin, O.B. and Muryumin, E.E., Fiz. Tverd. Tela, 2006, vol. 48, no. 3, p. 563 [Phys. Solid State (Engl. Transl.), vol. 48, no. 3, p. 605].

    Google Scholar 

  9. Chen, J.Y., Kutana, A., Collier, C.P., et al., Science, 2005, vol. 310, p. 1480.

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Joseph, S. and Aluru, N.R., Phys. Rev. Lett., 2008, vol. 101, p. 064502.

    Article  PubMed  ADS  Google Scholar 

  11. Barber, A.H., Cohen, S.R., and Wagner, H.D., Phys. Rev. Lett., 2004, vol. 92, p. 186103.

    Article  PubMed  ADS  Google Scholar 

  12. Adamson, A.W. and Gast, A.P., Physical Chemistry of Surface, Toronto: Wiley-Interscience Publ., 1997.

    Google Scholar 

  13. Nuriel, S., Liu, L., Barber, A.H., et al., Chem. Phys. Lett., 2005, vol. 404, p. 263.

    Article  CAS  ADS  Google Scholar 

  14. English, D.S., Luckett, C., Jayaraman, K., et al., Res. Soc. Symp. Proc, 2006, vol. 899E, p. 0899.

    Google Scholar 

  15. Roldugin, V.I., Fizikokhimiya poverkhnosti (Physical Chemistry of Surface), Moscow: Intellekt, 2008.

    Google Scholar 

  16. Majumder, M., Chopra, N., Andrews, R., and Hinds, B.J., Nature, 2005, vol. 438, p. 44.

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Churaev, N.V., Fizikokhimiya protsessov massoperenosa v poristykh telakh (Physical Chemistry of the Processes of Mass Transfer in Porous Solids), Moscow: Khimiya, 1990.

    Google Scholar 

  18. Barash, Yu.S., Sily van-der-Vaal’sa (van der Waals Forces), Moscow: Nauka, 1988.

    Google Scholar 

  19. Gogotsi, Yu., Libera, J.A., Guvenc-Yazicioglu, A., et al., Appl. Phys. Lett., 2001, vol. 79, no. 7, p. 13.

    Article  Google Scholar 

  20. Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon, 1982; Moscow: Mir, 1986.

    Google Scholar 

  21. Ono S. and Kondo S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer-Verlag, 1960; Moscow: Inostrannaya Literatura, 1963.

    Google Scholar 

  22. Rekhviashvili, S.Sh., Rozenberg, B.A., and Dremov, V.V., Pis’ma Zh. Eksp. Teor. Fiz., 2008, vol. 88, no. 11, p. 805 [JETP Lett. (Engl. Transl.), vol. 88, no. 11, p. 772].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sh. Rekhviashvili.

Additional information

Original Russian Text © S.Sh. Rekhviashvili, E.V. Kishtikova, 2010, published in Fizikokhimiya Poverkhnosti i Zashchita Materialov, 2010, Vol. 46, No. 1, pp. 51–55.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rekhviashvili, S.S., Kishtikova, E.V. Properties of nonpolar fluids inside a carbon nanotube. Prot Met Phys Chem Surf 46, 55–59 (2010). https://doi.org/10.1134/S2070205110010077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205110010077

Keywords

Navigation