Skip to main content
Log in

Effect of orientation of crystal face of silver and its alloying with gold on properties of thin anodic Ag(I) oxide films: II. Photopotential

  • Physicochemical Processes at the Interfaces
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

The current efficiency of the formation of anodic oxide on polycrystalline silver is shown to decrease with an increase in the concentration of KOH solutions, while the rate-limiting stage remains the solid-phase mass transfer. Photopotential in nano-size Ag(I) oxide films anodically formed on polycrystalline silver is independent of the OH ion concentration, which means that a photoresponse is generated in the bulk oxide. The n-type conductivity of oxide films on silver, Ag-Au alloys, and low-index silver crystal faces, which was determined previously when measuring photocurrent, is confirmed. Replacing polycrystalline silver with its monocrystals results in a substantial decrease in the photopotential amplitude due to the decrease in the deviation from a stoichiometric composition. The electron mobility and the partial electronic photoconductivity in the anodic Ag(I) oxide depend on the orientatinon of the crystal face in silver and the gold content. At E = 0.56 V, a series of changes in these characteristics correlates to the changes in other structure-dependent parameters of Ag2O oxide (the optical absorption coefficient α, the concentration of donor defects N D, the width of the spatial charge region W, and the Debye screening length L D).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kudryashov, D.A., Grushevskaya, S.N., Ganzha, S.V., and Vvedenskii, A.V. Fizikokhimiya Poverkhn. Zashch. Mater., 2009, vol. 45, in press.

  2. Perkins, R.S., Tilak, B.V., Conway, B.E., and Kozlowska, H.A., Electrochim. Acta, 1972, vol. 17, no. 8, p. 1471.

    Article  CAS  Google Scholar 

  3. Tjeng, L.H., Meinders, M.B.J., van Elp, J., and Ghijsen, J., Phys. Rev. B, 1990, vol. 41, no. 5, p. 3190.

    Article  CAS  ADS  Google Scholar 

  4. Barik, U.K., Srinivasan, S., Nagendra, C.L., and Subrahmanyan, A., Thin Solid Films, 2003, vol. 429, nos. 1–2, p. 129.

    Article  Google Scholar 

  5. Vijh, A.K. and Diggle, J.W., in Oxides and Oxide Films, New York: Marcel Dekker, 1973, vol. 2, p. 150.

    Google Scholar 

  6. Butler, M.A. and Ginley, D.S., J. Electrochem. Soc., 1978, vol. 125, no. 2, p. 228.

    Article  CAS  Google Scholar 

  7. Tselepis, E. and Fortin, E., J. Mater. Sci., 1986, vol. 21, p. 985.

    Article  CAS  ADS  Google Scholar 

  8. Varkey, A.J. and Fort, A.F., Sol. Energy Mater. Sol. Cells, 1993, vol. 29, no. 3, p. 253.

    Article  CAS  Google Scholar 

  9. LukÕanchikov, A.N., Grushevskaya, S.N., Kudryashov, D.A., and Vvedenskii, A.V., RF Patent no. 55988, Byull. Izobret., 2006, no. 24, p. 3.

  10. Dignam, M.J., Barret, H.M., and Nagy, G.D., Can. J. Chem., 1969, vol. 47, no. 22, p. 4253.

    Article  CAS  Google Scholar 

  11. Tilak, B.V., Perkins, R.S., Kozlowska, H.A., and Conway, B.E., Electrochim. Acta, 1972, vol. 17, no. 8, p. 1447.

    Article  CAS  Google Scholar 

  12. Becerra, J.G., Salvarezza, R.C., and Arvia, A.J., Electrochim. Acta, 1990, vol. 35, no. 3, p. 595.

    Article  CAS  Google Scholar 

  13. Alonso, C., Salvarezza, R.C., Vara, J.M., and Arvia, A.J., Electrochim. Acta, 1990, vol. 35, no. 2, p. 489.

    Article  CAS  Google Scholar 

  14. Droog, J.M.M., J. Electroanal. Chem., 1980, vol. 115, nos. 1–2, p. 225.

    Article  Google Scholar 

  15. Vvedenskii, A., Grushevskaya, S., Kudryashov, D., and Kuznetsova, T., Corros. Sci., 2007, vol. 49, p. 4523.

    Article  CAS  Google Scholar 

  16. Galus, Z., Teoretyczne podstawy electroanalizy chemicznej, Warszawa: Panstwowe Wydawnictwo Naukowe, 1971.

    Google Scholar 

  17. Kuznetsova, T.A., Cand. Sci. (Chem.) Dissertation, Voronezh: VGU, 2002.

    Google Scholar 

  18. Kuznetsova, T.A., Flegel’, E.V., and Vvedenskii, A.V., Zashch. Met., 2002, vol. 38, no. 4, p. 379.

    Google Scholar 

  19. Kudryashov, D.A., Grushevskaya, S.N., and Vvedenskii, A.V., Zashch. Met., 2008, vol. 44, no. 3, p. 321.

    Google Scholar 

  20. Pleskov, Yu.V. and Gurevich, Yu.Ya., Semiconductor Photoelectrochemistry, New York: Consultants Bureau, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Vvedenskii.

Additional information

Original Russian Text © D.A. Kudryashov, S.N. Grushevskaya, O.Olalekan, N.V. Kukhareva, A.V. Vvedenskii, 2010, published in Fizikokhimiya Poverkhnosti i Zashchita Materia-lov, 2010, Vol. 46, No. 1, pp. 28–35.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kudryashov, D.A., Grushevskaya, S.N., Olalekan, O. et al. Effect of orientation of crystal face of silver and its alloying with gold on properties of thin anodic Ag(I) oxide films: II. Photopotential. Prot Met Phys Chem Surf 46, 32–39 (2010). https://doi.org/10.1134/S2070205110010041

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205110010041

Keywords

Navigation