Skip to main content
Log in

Corrosion protection of mild steel by applying TiO2 nanoparticle coating via sol-gel method

  • Nanoscale and Nanostructured Materials and Coatings
  • Published:
Protection of Metals and Physical Chemistry of Surfaces Aims and scope Submit manuscript

Abstract

TiO2 nanoparticle coatings possess good thermal and electrical properties and they are resistant to oxidation, corrosion, erosion and wear in high temperature environments. This property is very important factor in the applications such as pipelines, castings and automotive industry. In this investigation a uniform TiO2 nanoparticle coating has been applied on mild steel, using sol-gel method. The coating was deposited on mild steel substrate by dip coating technique. The morphology and structure of the coating were analyzed using SEM, AFM and X-ray diffraction. The anticorrosion performances of the coating have been evaluated by using electrochemical techniques. It is worthy to note that the film uniformity was retained in high temperatures and no crack and flaking off from the substrate was observed. The Tafel polarization measurements provide an explanation to the increased resistance of TiO2 nanoparticle coated mild steel against corrosion and icorr was decreased from 18.621 to 0.174 μA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonini, N., Carotta, M.C., Chiorini, A., et al., Sens. Actuators, Ser. B: Chem., 2000, vol. 68, p. 274.

    Article  Google Scholar 

  2. Ivanova, T., Harizanova, A., Surtchev, M., and Nenova, Z., Sol. Energy Mater. Sol. Cells, 2003, vol. 76, p. 591.

    Article  CAS  Google Scholar 

  3. Perera, V.P.S., Jayaweera, P.V.V., Pitigala, P.K.D.D.P., et al., Synth. Met., 2004, vol. 143, p. 283.

    Article  CAS  Google Scholar 

  4. Keshmiri, M., Mohseni, M., and Troczynski, T., Appl. Catal., Ser. B: Environ., 2004, vol. 53, p. 209.

    Article  CAS  Google Scholar 

  5. Mao, D., Lu, G., and Chen, Q., Appl. Catal., Ser. A: Gen., 2004, vol. 263, p. 83.

    Article  CAS  Google Scholar 

  6. Huang, S.Y., Kavan, L., Exnar, I., and Gratzel, M., J. Electrochem. Soc., 1995, vol. 142, p. L142.

    Article  CAS  Google Scholar 

  7. Aliev, A.E. and Shin, H.W., Displays, 2002, vol. 32, p. 239.

    Article  Google Scholar 

  8. Fretwell, R. and Douglas, P., J. Photochem. Photobiol., Ser. A: Chem., 2001, vol. 143, p. 229.

    Article  CAS  Google Scholar 

  9. Tai, W.P. and Oh, J.H., Sens. Actuators, Ser. B: Chem., 2002, vol. 85, p. 154.

    Article  Google Scholar 

  10. Karunagaran, B., Uthirakumar, P., Chung, S.J., et al., Materials Characterization, 2007, vol. 58, p. 680.

    Article  CAS  Google Scholar 

  11. Shen, G.X., Chen, Y.C., and Lin, C.J., Thin. Solid. Films, 2005, vol. 489, p. 130.

    Article  ADS  CAS  Google Scholar 

  12. Sberveglieri, G., Depero, L.E., Ferroni, M., et al., Adv. Mater., 1996, vol. 8, p. 334.

    Article  CAS  Google Scholar 

  13. Bally, A.R., Korobeinikova, E.N., Schmid, P.E., et al., J. Phys., Ser. D: Appl. Phys., 1998, vol. 31, p. 149.

    Google Scholar 

  14. Carotta, M.C., Ferroni, M., Guidi, V., and Martinelli, G., Adv. Mater., 1999, vol. 11, p. 943.

    Article  CAS  Google Scholar 

  15. Chow, L.L.W., Yuen, M.M.F., Chan, P.C.H., and Cheung A.T., Sens. Actuators, Ser. B, 2001, vol. 76, p. 310.

    Article  Google Scholar 

  16. Tuan, A., Yoon, M., Medvedev, V., et al., Thin. Solid. Films, 2000, vol. 377/378, p. 766.

    Article  Google Scholar 

  17. Kang, B.C., Lee, S.B., and Boo, J.H., Surf. Coat. Technol., 2000, vol. 131, p. 88.

    Article  CAS  Google Scholar 

  18. Liu, X., Yin, J., Liu, Z.G., et al., Appl. Surf. Sci., 2001, vol. 174, p. 35.

    Article  ADS  CAS  Google Scholar 

  19. Ong, C.K. and Wang, S.J., Appl. Surf. Sci., 2001, vol. 185, p. 47.

    Article  ADS  CAS  Google Scholar 

  20. Tang, H., Prasad, K., Sanjines, R., and Levy, F., Sens. Actuators, Ser. B, 1995, vol. 26/27, p. 71.

    Article  Google Scholar 

  21. Garzella, C., Comini, E., Tempesti, E., et al., Sens. Actuators, Ser. B, 2000, vol. 68, p. 189.

    Article  Google Scholar 

  22. Brinker, C.J. and Schere, G.W., Sol-Gel Science, N.Y.: Academic Press, 1990.

    Google Scholar 

  23. Gluszek, J., Jedrkowiak, J., and Markowski, J., J. Masalski. Biomaterials, 1990, vol. 11, p. 330.

    Article  CAS  Google Scholar 

  24. Hawthorne, H.M., Neville, A., Troczynski, T., et al., Surf. Coat. Technol., 2004, vol. 176, p. 243.

    Article  CAS  Google Scholar 

  25. Ruhi, G., Modi, O.P., Singh, I.B., et al., Surface and Coatings Technol., 2006, vol. 201, p. 1866.

    Article  CAS  Google Scholar 

  26. Shanaghi, A., Sabour Rouhaghdam, A., Shahrabi, T., and Aliofkhazraei, M., Materials Sci. (in press).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Sabour.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shanaghi, A., Sabour, A.R., Shahrabi, T. et al. Corrosion protection of mild steel by applying TiO2 nanoparticle coating via sol-gel method. Prot Met Phys Chem Surf 45, 305–311 (2009). https://doi.org/10.1134/S2070205109030071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070205109030071

Keywords

Navigation