Skip to main content
Log in

Estimating the Efficiency of Commercial Domestic Catalysts in the Reaction of Ammonia Decomposition

  • DOMESTIC CATALYSTS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Adapting domestic commercial catalysts for use in such important technological processes as the environmentally friendly production of hydrogen accompanied by СОх and NОх emissions is in demand under import substitution conditions. Ammonia seems to be the most promising Н2 accumulator, due to its high hydrogen density and simple storage and transportation. This work considers the possibility of using the domestic NIAP-03-01, NIAP-07-01, NIAP-06-06 catalysts and Со-Al2O3/SiO2 developed by the authors in the ammonia dissociation reaction. The conversion and hydrogen production capacity grow in the order NIAP-06-06<NIAP-03-01<NIAP-07-01<Со-Al2O3/SiO2. The conversion of ammonia on Со-Al2O3/SiO2 is close to 100% at 550°C and a gas hourly space velocity (GHSV) of 3000 h−1. The effective activation energies of all the catalysts are comparable to the available literature data for the ammonia decomposition reaction to potentially enable their application at moderate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Tarasov, B.P., Lototskii, M.V., and Yartys’, V.A., Ross. Khim. Zh., 2006, vol. 50, no. 6, pp. 34–48.

    CAS  Google Scholar 

  2. Bell, T.E. and Torrente-Murciano, L., Top. Catal., vol. 59, no. 15, pp. 1438–1457. https://doi.org/10.1007/s11244-016-0653-4

  3. Sakintuna, B., Lamari-Dirkkim, F., and Hirscher, M., Int. J. Hydrogen Energy, 2007, vol. 32, pp. 1121–1140. https://doi.org/10.1016/j.ijhydene.2006.11.022

    Article  CAS  Google Scholar 

  4. Lucentini, I., Garcia, X., Vendrell, X., and Llorca, J., Ind. Eng. Chem. Res., vol. 60, no. 51, pp. 18560–18611. https://doi.org/10.1021/acs.iecr.1c00843

  5. Murray, L.J., Dincă, M., and Long, J.R., Chem. Soc. Rev., 2009, vol. 38, no. 5, pp. 1294–1314. https://doi.org/10.1039/B802256A

    Article  CAS  PubMed  Google Scholar 

  6. Lamb, K.E., Dolan, M.D., and Kennedy, D.F., Int. J. Hydrogen Energy, 2019, vol. 44, no. 7, pp. 3580–3593. https://doi.org/10.1016/j.ijhydene.2018.12.024

    Article  CAS  Google Scholar 

  7. Schlögl, R., Angew. Chem., Int. Ed., 2003, vol. 42, no. 18, pp. 2004–2008. https://doi.org/10.1002/anie.200301553

    Article  CAS  Google Scholar 

  8. Chang, F., Gao, W., Guo, J., and Chen, P., Adv. Mater., 2021, vol. 33, no. 50, article no. 2005721. https://doi.org/10.1002/adma.202005721

    Article  CAS  Google Scholar 

  9. Mukherjee, S., Devaguptapu, S.V., Sviripa, A., Lund, C.R.F., and Wu, G., Appl. Catal., B, 2018, vol. 226, pp. 162–181. https://doi.org/10.1016/j.apcatb.2017.12.039

    Article  CAS  Google Scholar 

  10. Xie, P., Yao, Y., Huang, Z., Liu, Z., Zhang, J., Li, T., Wang, G., Shahbazian-Yassar, R., Hu, L., and Wang, C., Nat. Commun., 2019, vol. 10, article no. 4011. https://doi.org/10.1038/s41467-019-11848-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Khan, W.U., Alasiri, H.S., Ali, S.A., and Hossain, M.M., Chem. Rec., 2022, vol. 22, no. 7, article no. e202200030. https://doi.org/10.1002/tcr.202200030

    Article  CAS  PubMed  Google Scholar 

  12. Miao, M., Gong, X., Lei, S., Wang, L., Sha, M., and Meng, Q., Chem. Phys., 2021, vol. 548, article no. 111249. https://doi.org/10.1016/j.chemphys.2021.111249

    Article  CAS  Google Scholar 

  13. Duan, X., Ji, J., Qian, G., Fan, C., Zhu, Y., Zhou, X., Chen, D., and Yuan, W., J. Mol. Catal. A: Chem., 2012, vol. 357, pp. 81–86. https://doi.org/10.1016/j.molcata.2012.01.023

    Article  CAS  Google Scholar 

  14. Le, T.A., Do, Q.C., Kim, Y., Kim, T.-W., and Chae, H.-J., Korean J. Chem. Eng., 2021, vol. 38, no. 6, pp. 1087–1103. https://doi.org/10.1007/s11814-021-0767-7

    Article  CAS  Google Scholar 

  15. Yin, S.F., Xu, B.Q., Zhou, X.P., and Au, C.T., Appl. Catal., A, 2004, vol. 277, nos. 1–2, pp. 1–9. https://doi.org/10.1016/j.apcata.2004.09.020

  16. Lendzion-Bieluń, Z., Pelka, R., and Arabczyk, W., Catal. Lett., 2009, vol. 129, no. 1, pp. 119–123. https://doi.org/10.1007/s10562-008-9785-x

    Article  CAS  Google Scholar 

  17. Gu, Y.-Q., Jin, Z., Zhang, H., Xu, R.-J., Zheng, M.-J., Guo, Y.-M., Song, Q.-S., and Jia, C.J., J. Mater. Chem. A, 2015, vol. 3, no. 33, pp. 17172–17180. https://doi.org/10.1039/C5TA04179A

    Article  CAS  Google Scholar 

  18. Ganley, J.C., Thomas, F.S., Seebauer, E.G., and Masel, R.I., Catal. Lett., 2004, vol. 96, no. 3, pp. 117–122. https://doi.org/10.1023/b:catl.0000030108.50691.d4

    Article  CAS  Google Scholar 

  19. Yakovenko, R.E., Zubkov, I.N., Narochnyi, G.B., Papeta, O.P., Denisov, O.D., and Savost’yanov, A.P., Kinet. Katal., 2020, vol. 61, no. 2, pp. 278–286. https://doi.org/10.31857/S0453881120020148

    Article  Google Scholar 

  20. Averbukh, A.Ya., Tumarkina, E.S., Mukhlenov, I.P., Kopylev, B.A, and Rumyantseva, E.S., Praktikum po obshchei khimicheskoi tekhnologii: Uchebnoe posobie dlya studentov vuzov (Laboratory Course on General Chemical Technology: A Manual for Higher School Students), Mukhlenov, I.P., Ed., Moscow: Vysshaya shkola, 1979.

  21. Ay, S., Ozdemir, M., and Melikoglu, M., Chem. Eng. Res. Des., 2021, vol. 175, pp. 146–160. https://doi.org/10.1016/j.cherd.2021.08.039

    Article  CAS  Google Scholar 

  22. Zeng, Y., Chen, G., Wang, J., Zhou, R., Sun, Y., Weidenkaff, A., Shen, B., and Tu, X., J. Energy Inst., 2022, vol. 104, pp. 12–21. https://doi.org/10.1016/j.joei.2022.06.008

    Article  CAS  Google Scholar 

  23. Kwon, Y., Eichler, J.E., and Mullins, C.B., J. CO 2 Util., 2022, vol. 63, article no. 102112. https://doi.org/10.1016/j.jcou.2022.102112

  24. Jozwiak, W.K., Kaczmarek, E., Maniecki, T.P., Ignaczak, W., and Maniukiewicz, W., Appl. Catal., A, 2007, vol. 326, no. 1, pp. 17–27. https://doi.org/10.1016/j.apcata.2007.03.021

  25. Yu, X., Lin, B., Lin, J., Wang, R., and Wei, K., J. Rare Earths, 2008, vol. 26, no. 5, pp. 711–716. https://doi.org/10.1016/S1002-0721(08)60168-4

    Article  Google Scholar 

  26. Lin, H.-Y. and Chen, Y.-W., Mater. Chem. Phys., 2004, vol. 85, no. 1, pp. 171–175. https://doi.org/10.1016/j.matchemphys.2003.12.028

    Article  CAS  Google Scholar 

  27. Li, C., Wong, L., Tang, L., Scarlett, N.V.Y., Chiang, K., Patel, J., Burke, N., and Sage, V., Appl. Catal., A, 2017, vol. 537, pp. 1–11. https://doi.org/10.1016/j.apcata.2017.02.022

  28. Van Steen, E., Sewell, G.S., Makhothe, R.A., Micklethwaite, C., Manstein, H., de Lange, M., and O’Connor, C.T., J. Catal., vol. 162, no. 2, pp. 220–229. https://doi.org/10.1006/jcat.1996.0279

  29. Sexton, B.A., Hughes, A.E., and Turney, T.W., J. Catal., vol. 97, no. 2, pp. 390–406. https://doi.org/10.1016/0021-9517(86)90011-4

  30. International Center for Diffraction Data (ICDD), PDF-2 Release 2014, Powder Diffraction File PDF#01-070-6828. https://www.icdd.com. Cited February 28, 2024.

  31. International Center for Diffraction Data (ICDD), PDF-2 Release 2014, Powder Diffraction File PDF#01-078-3327. https://www.icdd.com. Cited February 28, 2024.

  32. International Center for Diffraction Data (ICDD), PDF-2 Release 2014, Powder Diffraction File PDF#01-073-1519. https://www.icdd.com. Cited February 28, 2024.

  33. International Center for Diffraction Data (ICDD), PDF-2 Release 2014, Powder Diffraction File PDF#01-075-0783. https://www.icdd.com. Cited February 28, 2024.

  34. International Center for Diffraction Data (ICDD), PDF-2 Release 2014, Powder Diffraction File PDF#00-046-1312. https://www.icdd.com. Cited February 28, 2024.

  35. International Center for Diffraction Data (ICDD), PDF-2 Release 2014, Powder Diffraction File ICDD 42-1467. https://www.icdd.com. Cited February 28, 2024.

  36. Ortega, K.F., Rein, D., Lüttmann, C., Heese, J., Özcan, F., Heidelmann, M., Folke, J., Kähler, K., Schlögl, R., and Behrens, M., ChemCatChem, 2017, vol. 9, no. 4, pp. 659–671. https://doi.org/10.1002/cctc.201601355

    Article  CAS  Google Scholar 

  37. Arabczyk, W. and Zamlynny, J., Catal. Lett., 1999, vol. 60, no. 3, pp. 167–171. https://doi.org/10.1023/A:1019007024041

    Article  CAS  Google Scholar 

  38. Li, Y., Yao, L., Liu, S., Zhao, J., Ji, W., and Au, C.-T., Catal. Today, 2011, vol. 160, no. 1, pp. 79–86. https://doi.org/10.1016/j.cattod.2010.02.066

    Article  CAS  Google Scholar 

  39. Itoh, M., Masuda, M., and Machida, K., Mater. Trans., 2002, vol. 43, no. 11, pp. 2763–2767. https://doi.org/10.2320/matertrans.43.2763

    Article  CAS  Google Scholar 

  40. Duan, X., Qian, G., Zhou, X., Sui, Z., Chen, D., and Yuan, W., Appl. Catal., B, 2011, vol. 101, nos. 3–4, pp. 189–196. https://doi.org/10.1016/j.apcatb.2010.09.017

  41. Zhang, J., Müller, J.-O., Zheng, W., Wang, D., Su, D., and Schlögl, R., Nano Lett., 2008, vol. 8, no. 9, pp. 2738–2743. https://doi.org/10.1021/nl8011984

    Article  CAS  PubMed  Google Scholar 

  42. Deng, Q.-F., Zhang, H., Hou, X.-X., Ren, T.-Z., and Yuan, Z.-Y., Int. J. Hydrogen Energy, 2012, vol. 37, no. 21, pp. 15901–15907. https://doi.org/10.1016/j.ijhydene.2012.08.069

    Article  CAS  Google Scholar 

  43. Sima, D., Wu, H., Tian, K., Xie, S., Foo, J.J., Li, S., Wang, D., Ye, Y., Zheng, Z., and Liu, Y.-Q., Int. J. Hydrogen Energy, 2020, vol. 45, no. 16, pp. 9342–9352. https://doi.org/10.1016/j.ijhydene.2020.01.209

    Article  CAS  Google Scholar 

  44. Vacharapong, P., Arayawate, S., Henpraserttae, S., Katanyutanon, S., Charojrochkul, S., Lawtrakul, L., and Toochinda, P., ChemistrySelect, 2019, vol. 4, no. 40, pp. 11913–11919. https://doi.org/10.1002/slct.201902663

    Article  CAS  Google Scholar 

  45. Henpraserttae, S., Charojrochkul, S., Klysubun, W., Lawtrakul, L., and Toochinda, P., Catal. Lett., 2018, vol. 148, no. 6, pp. 1775–1783. https://doi.org/10.1007/s10562-018-2381-9

    Article  CAS  Google Scholar 

  46. Henpraserttae, S., Charojrochkul, S., Lawtrakul, L., and Toochinda, P., ChemistrySelect, 2018, vol. 3, no. 42, pp. 11842–11850. https://doi.org/10.1002/slct.201802975

    Article  CAS  Google Scholar 

  47. Huang, C., Li, H., Yang, J., Wang, C., Hu, F., Wang, X., Lu, Z.-H., Feng, G., and Zhang, R., Appl. Surf. Sci., 2019, vol. 478, pp. 708–716. https://doi.org/10.1016/j.apsusc.2019.01.269

    Article  CAS  Google Scholar 

  48. Chang, F., Wu, H., van der Pluijm, R., Guo, J., Ngene, P., and de Jongh, P.E., J. Phys. Chem., 2019, vol. 123, no. 35, pp. 21487–21496. https://doi.org/10.1021/acs.jpcc.9b03878

    Article  CAS  Google Scholar 

  49. Meng, T., Xu, Q.-Q., Li, Y.-T., Chang, J.-L., Ren, T.-Z., and Yuan, Z.-Y., J. Ind. Eng. Chem., 2015, vol. 32, pp. 373–379. https://doi.org/10.1016/j.jiec.2015.09.017

    Article  CAS  Google Scholar 

  50. Li, X.-K., Ji, W.-J., Zhao, J., Wang, S.-J., and Au, C.-T., J. Catal., 2005, vol. 236, no. 2, pp. 181–189. https://doi.org/10.1016/j.jcat.2005.09.030

    Article  CAS  Google Scholar 

  51. Zhang, Z.-S., Fu, X.-P., Wang, W.-W., Jin, Z., Song, Q.-S., and Jia, C.-J., Sci. China: Chem., 2018, vol. 61, no. 11, pp. 1389–1398. https://doi.org/10.1007/s11426-018-9261-5

    Article  CAS  Google Scholar 

  52. Torrente-Murciano, L., Hill, A.K., and Bell, T.E., Catal. Today, 2017, vol. 286, pp. 131–140. https://doi.org/10.1016/j.cattod.2016.05.041

    Article  CAS  Google Scholar 

  53. Zhang, H., Alhamed, Y.A., Kojima, Y., Al-Zahrani, A.A., and Petrov, L.A., C. R. Acad. Bulg. Sci., 2013, vol. 66, no. 4, pp. 519–524. https://doi.org/10.7546/CR-2013-66-4-13101331-7

    Article  CAS  Google Scholar 

  54. Hu, X.-C., Wang, W.-W., Jin, Z., Wang, X., Si, R., and Jia, C.-J., J. Energy Chem., 2019, vol. 38, pp. 41–49. https://doi.org/10.1016/j.jechem.2018.12.024

    Article  Google Scholar 

  55. Podila, S., Alhamed, Y.A., AlZahrani, A.A., and Petrov, L.A., Int. J. Hydrogen Energy, 2015, vol. 40, no. 45, pp. 15411–15422. https://doi.org/10.1016/j.ijhydene.2015.09.057

    Article  CAS  Google Scholar 

  56. Podila, S., Driss, H., Zaman, S.F., Alhamed, Y.A., AlZahrani, A.A., Daous, M.A., and Petrov, L.A., J. Mol. Catal. A: Chem., 2016, vol. 414, pp. 130–139. https://doi.org/10.1016/j.molcata.2016.01.012

    Article  CAS  Google Scholar 

  57. Zhang, H., Alhamed, Y.A., Chu, W., Ye, Z., AlZahrani, A., and Petrov, L., Appl. Catal., A, 2013, vols. 464–456, pp. 156–164. https://doi.org/10.1016/j.apcata.2013.05.046

  58. Lara-García, H.A., Mendoza-Nieto, J.A., Pfeiffer, H., and Torrente-Murciano, L., Int. J. Hydrogen Energy, 2019, vol. 44, no. 57, pp. 30062–30074. https://doi.org/10.1016/j.ijhydene.2019.09.120

    Article  CAS  Google Scholar 

  59. Li, G., Zhang, H., Yu, X., Lei, Z., Yin, F., and He, X., Int. J. Hydrogen Energy, 2022, vol. 47, no. 26, pp. 12882–12892. https://doi.org/10.1016/j.ijhydene.2022.02.046

    Article  CAS  Google Scholar 

  60. Golosman, E.Z. and Volchenkova, S.A., Neftegazo-khimiya, 2017, no. 3, pp. 41–51.

  61. Strekalov, Yu.V., Efremov, V.N., Kashinskaya, A.V., and Golosman, E.Z., Ekol. Prom-st. Ross., 2014, no. 8, pp. 24–27.

  62. Eremina, Yu.G., Khisamutdinova, E.R., Moiseev, M.M., and Gavrilkin, A.A., Usp. Khim. Khim. Tekhnol., 2007, vol. 21, no. 9, pp. 100–102.

    Google Scholar 

  63. Moiseev, M.M., Leonov, V.T., and Moiseeva, I.D., Izv. Tul. Gos. Univ., Estestv. Nauki, 2014, nos. 1–2, pp. 27–33.

Download references

Funding

This work was performed as a part of the Strategic Project “Scientific Innovative Cluster and Contract R&D Center” of the program for the development of Platov South Russian State Polytechnic University as a part of the Strategic Academic Leadership Program “Priority-2023”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. E. Yakovenko.

Ethics declarations

The authors declare that they have no conflict of interests.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, R.E., Krasnyakova, T.V., Dul’nev, A.V. et al. Estimating the Efficiency of Commercial Domestic Catalysts in the Reaction of Ammonia Decomposition. Catal. Ind. 16, 58–68 (2024). https://doi.org/10.1134/S2070050424010100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050424010100

Keywords:

Navigation