Skip to main content
Log in

The Influence of Test Conditions for the Second Hydrocracking Stage Catalysts on the Time to Reach Steady-State Activity

  • CATALYSIS IN OIL REFINING INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Catalysts of the second stage of hydrocracking are tested under different conditions, reducing the time required to reach the level of steady-state activity. Tests are performed on a laboratory testbench under conditions (temperature, pressure, and liquid hourly space velocity (LHSV)) close to industrial and typical of the second stage of hydrocracking. Introducing an additional preliminary stage at the start of tests at elevated temperatures and LHSVs while using a dimethyl disulfide solution in decane as a sulfiding mixture are shown to substantially reduce the time of experiment. Conditions of the preliminary stage that preserve the catalyst’s selectivity to diesel are selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Speight, J.G., The Refinery of the Future, Amsterdam: Elsevier, 2011, ch. 9, pp. 275–313. https://doi.org/10.1016/B978-0-8155-2041-2.10009-8

    Book  Google Scholar 

  2. Singh, S.R., Chaturvedi, A., Dori, L., Ranjan, A., Lodhi, S.K., Singh, A., and Neeraj, G., Int. J. Sci. Res. Rev., 2013, vol. 2, no. 2, pp. 27–35.

    Google Scholar 

  3. Parkash, S., Refining Processes Handbook, Amsterdam: Elsevier, 2003, ch. 3, pp. 62–108. https://doi.org/10.1016/B978-075067721-9/50003-7

    Book  Google Scholar 

  4. Dahlberg, A.J. and Mukherjee, U.K., in Encyclopaedia of Hydrocarbons, Amadei, C., Ed., Rome: ENI/Istituto della Enciclopedia italiana, 2006, vol. 2, ch. 6, pp. 273–297.

  5. Francis, J., Guillon, E., Bats, N., Pichon, C., Corma, A., and Simon, L.J., Appl. Catal., A, 2011, vols. 409–410, pp. 140–147. https://doi.org/10.1016/j.apcata.2011.09.040

  6. Gutberlet, L.C., Bertolacini, R.J., and Kukes, S.G., Energy Fuels, 1994, vol. 8, no. 1, pp. 227–233. https://doi.org/10.1021/ef00043a035

    Article  CAS  Google Scholar 

  7. Dik, P.P., Klimov, O.V., Koryakina, G.I., Leonova, K.A., Pereyma, V.Yu., Budukva, S.V., Gerasimov, E.Yu., and Noskov, A.S., Catal. Today, 2014, vols. 220–222, pp. 124–132. https://doi.org/10.1016/j.cattod.2013.07.004

  8. De Jong, K.P., Zečević, J., Friedrich, H., de Jongh, P.E., Bulut, M., van Donk, S., Kenmogne, R., Finiels, A., Hulea, V., and Fajula, F., Angew. Chem., 2010, vol. 49, no. 52, pp. 10074–10078. https://doi.org/10.1002/anie.201004360

    Article  CAS  Google Scholar 

  9. Ali, M.A., Tatsumi, T., and Masuda, T., Appl. Catal., A, 2002, vol. 233, nos. 1–2, pp. 77–90. https://doi.org/10.1016/S0926-860X(02)00121-7

  10. Vogt, E.T.C., Gareth, W.T., Chowdhury, A.D., and Weckhuysen, B.M., Adv. Catal., 2015, vol. 58, pp. 143–314. https://doi.org/10.1016/bs.acat.2015.10.001

    Article  CAS  Google Scholar 

  11. Dik, P.P., Danilova, I.G., Golubev, I.S., Kazakov, M.O., Nadeina, K.A., Budukva, S.V., Pereyma, V.Yu., Klimov, O.V., Prosvirin, I.P., Gerasimov, E.Yu., Bok, T.O., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., and Noskov, A.S., Fuel, 2019, vol. 237, pp. 178–190. https://doi.org/10.1016/j.fuel.2018.10.012

    Article  CAS  Google Scholar 

  12. Sullivan, R.F., Boduszynski, M.M., and Fetzer, J.C., Energy Fuels, 1989, vol. 3, no. 5, pp. 603–612. https://doi.org/10.1021/ef00017a013

    Article  CAS  Google Scholar 

  13. Yan, T.Y., Ind. Eng. Chem. Prod. Res. Dev., 1983, vol. 22, no. 1, pp. 154–160. https://doi.org/10.1021/i200020a025

    Article  CAS  Google Scholar 

  14. Yan, T.Y., Ind. Eng. Chem. Res., 1989, vol. 28, no. 10, pp. 1463–1466. https://doi.org/10.1021/ie00094a004

    Article  CAS  Google Scholar 

  15. Yin, C., Wang, Y., Xue, S., Liu, H., Li, H., and Liu, C., Fuel, 2016, vol. 175, pp. 13–19. https://doi.org/10.1016/j.fuel.2016.02.029

    Article  CAS  Google Scholar 

  16. Berhault, G., Perez De la Rosa, M., Mehta, A., Yácaman, M.J., and Chianelli, R.R., Appl. Catal., A, 2008, vol. 345, no. 1, pp. 80–88. https://doi.org/10.1016/j.apcata.2008.04.034

  17. Pereyma, V.Yu., Klimov, O.V., Prosvirin, I.P., Gerasimov, E.Yu., Yashnik, S.A., and Noskov, A.S., Catal. Today, 2018, vol. 305, pp. 162–170. https://doi.org/10.1016/j.cattod.2017.07.019

    Article  CAS  Google Scholar 

  18. Sau, M., Basak, K., Manna, U., Santra, M., and Verma, R.P., Catal. Today, 2005, vol. 109, nos. 1–4, pp. 112–119. https://doi.org/10.1016/j.cattod.2005.08.007

  19. Kazakov, M.O., Nadeina, K.A., Danilova, I.G., Dik, P.P., Klimov, O.V., Pereyma, V.Yu., Gerasimov, E.Yu., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., and Noskov, A.S., Catal. Today, 2018, vol. 305, pp. 117–125. https://doi.org/10.1016/j.cattod.2017.08.048

    Article  CAS  Google Scholar 

  20. Kazakov, M.O., Nadeina, K.A., Danilova, I.G., Dik, P.P., Klimov, O.V., Pereyma, V.Yu., Paukshtis, E.A., Golubev, I.S., Prosvirin, I.P., Gerasimov, E.Yu., Dobryakova, I.V., Knyazeva, E.E., Ivanova, I.I., and Noskov, A.S., Catal. Today, 2019, vol. 329, pp. 108–115. https://doi.org/10.1016/j.cattod.2019.01.003

    Article  CAS  Google Scholar 

  21. Marafi, M., Stanislaus, A., and Furimsky, E., Handbook of Spent Hydroprocessing Catalysts, Amsterdam: Elsevier, 2017, ch. 4, pp. 67–140. https://doi.org/10.1016/B978-0-444-63881-6.00004-4

    Book  Google Scholar 

  22. Mendes, P.S.F., Silva, J.M., Ribeiro, M.F., Bouchy, C., and Daudin, A., J. Ind. Eng. Chem., 2019, vol. 71, pp. 167–176. https://doi.org/10.1016/j.jiec.2018.11.019

    Article  CAS  Google Scholar 

  23. Cui, G., Wang, J., Fan, H., Sun, X., Jiang, Y., Wang, S., Liu, D., and Gui, J., Fuel Process. Technol., 2011, vol. 92, no. 12, pp. 2320–2327. https://doi.org/10.1016/j.fuproc.2011.07.020

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to E.Yu. Gerasimov and S.A. Selishcheva for their help in our studies.

Funding

Our analysis of literature data and characterization of catalyst samples were supported by the RF Ministry of Science and Higher Education as part of a State Task for the Boreskov Institute of Catalysis, project no. AAAA-A21-121011890074-4.

Our tests of catalysts were supported by AO Gazpromneft Omsk Oil Refinery.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Golubev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Glushachenkova

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubev, I.S., Dik, P.P., Kazakov, M.O. et al. The Influence of Test Conditions for the Second Hydrocracking Stage Catalysts on the Time to Reach Steady-State Activity. Catal. Ind. 15, 434–442 (2023). https://doi.org/10.1134/S2070050423040074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423040074

Keywords:

Navigation