Skip to main content
Log in

Selective Catalytic Hydrodebromination of 2,3,4,5-Tetrabromothiophene with Hydrogen on a Palladium Catalyst

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A way of hydrodebrominating 2,3,4,5-tetrabromothiophene (1) to 3,4-dibromothiophene (2) on a 5% Pd/Sibunit catalyst is proposed. The effect of solvent, alkaline agent, temperature, and concentration of 1 on the yield of 2 is studied. The optimum conditions are catalyst : substrate mass ratio, 1:10; temperature, 80°С; H2 pressure, 0.7 MPa; solvent, dimethylformamide; alkaline agent, triethylamine in amounts of 2.2 mol per 1 mol of substrate 1. The yield of 2 is 97.5% in this case. The catalyst can be reused in at least 15 cycles with high yields of 2. The new approach appears to be highly productive with little waste, compared to the conventional chemical reduction of 1 with zinc in CH3COOH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Da Cruz, R.M.D., Braga, R.M., de Andrade, H.H.N., Monteiro, Á.B., Luna, I.S., da Cruz, R.M.D., Scotti, M.T., Mendonça-Junior, F.J.B., and de Almeida, R.N., Heliyon, 2020, vol. 6, no. 11, article no. e05520. https://doi.org/10.1016/j.heliyon.2020.e05520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang, Y., Hu, X., Huang, H., Jin, Z., Gao, J., Guo, Y., Zhong, Y., Li, Z., Zong, X., Wang, K., Zhang, L., and Liu, Z., Eur. J. Med. Chem., 2022, vol. 237, article no. 114413. https://doi.org/10.1016/j.ejmech.2022.114413

    Article  CAS  PubMed  Google Scholar 

  3. RF Patent 2565766, 2015.

  4. Aguero, S., Megy, S., Eremina, V.V., Kalashnikov, A.I., Krylova, S.G., Kulagina, D.A., Lopatina, K.A., Fournier, M., Povetyeva, T.N., Vorozhtsov, A.B., Sysolyatin, S.V., Zhdanov, V.V., and Terreux, R., ACS Omega, 2021, vol. 6, no. 23, pp. 15400–15411. https://doi.org/10.1021/acsomega.1c01786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nielsen, C.B. and Bjørnholm, T., Org. Lett., 2004, vol. 6, no. 19, pp. 3381–3384. https://doi.org/10.1021/ol048659n

    Article  CAS  PubMed  Google Scholar 

  6. Honciuc, A., Metzger, R.M., Gong, A., and Spangler, C.W., J. Am. Chem. Soc., 2007, vol. 129, no. 26, pp. 8310–8319. https://doi.org/10.1021/ja068729g

    Article  CAS  PubMed  Google Scholar 

  7. Inaoka, S. and Collard, D.M., J. Mater. Chem., 1999, vol. 9, no. 8, pp. 1719–1726. https://doi.org/10.1039/a900075e

    Article  CAS  Google Scholar 

  8. Ertas, E. and Ozturk, T., Tetrahedron Lett., 2004, vol. 45, no. 17, pp. 3405–3407. https://doi.org/10.1016/j.tetlet.2004.03.023

    Article  CAS  Google Scholar 

  9. Araki, K., Endo, H., Masuda, G., and Ogawa, T., Chem.-Eur. J., 2004, vol. 10, no. 13, pp. 3331–3340. https://doi.org/10.1002/chem.200400063

    Article  CAS  PubMed  Google Scholar 

  10. Velauthamurty, K., Higgins, S.J., Rajapakse, R.M.G., Bandara, H.M.N., and Shimomura, M., Electrochim. Acta, 2010, vol. 56, no. 1, pp. 326–332. https://doi.org/10.1016/j.electacta.2010.08.075

    Article  CAS  Google Scholar 

  11. Xue, Y.-J., Cao, F.-Y., Huang, P.-K., Su, Y.-C., and Cheng, Y.-J., J. Mater. Chem A, 2020, vol. 8, no. 10, pp. 5315–5322. https://doi.org/10.1039/c9ta14040a

    Article  CAS  Google Scholar 

  12. Arsenyan, P., Paegle, E., and Belyakov, S., Tetrahedron Lett., 2010, vol. 51, no. 1, pp. 205–208. https://doi.org/10.1016/j.tetlet.2009.10.133

    Article  CAS  Google Scholar 

  13. Sadekar, A.G., Mohite, D., Mulik, S., Chandrasekaran, N., Sotiriou-Leventis, C., and Leventis, N., J. Mater. Chem., 2012, vol. 22, no. 1, pp. 100–108. https://doi.org/10.1039/c1jm12563j

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the Biysk Regional Shared Resource Center for the Synthesis and Research of High-Energy Compounds and Special Materials.

Funding

This work was supported by the RF Ministry of Science and Higher Education as part of a State Task for the Institute for Problems of Chemical and Energetic Technologies, project no. FUFE-2021-0004 “Developing Means of Synthesis and Technologies for the Production of Medicinal Substances and Materials.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Eremina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by A. Tulyabaev

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseeva, N.A., Eremina, V.V., Sysolyatin, S.V. et al. Selective Catalytic Hydrodebromination of 2,3,4,5-Tetrabromothiophene with Hydrogen on a Palladium Catalyst. Catal. Ind. 15, 404–409 (2023). https://doi.org/10.1134/S2070050423040025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423040025

Keywords:

Navigation