Skip to main content
Log in

Acetylene Production Technologies in the 21st Century: Main Trends of Their Development in the Paradigm of Low-Carbon Economy of the Future

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

This paper is a review of acetylene production technologies, which are both used for a long time in industry and currently at the stage of laboratiory studies and demonstration testbenches. The possibility of transition from acetylene production technologies accompanied by the formation of substantial amounts of greenhouse gases (carbide technology, oxidative natural gas pyrolysis) to low-carbon or carbon-free natural gas and coal plasmochemical processes using energy generated by renewable sources (wind and solar) is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Schobert, H., Chem. Rev., 2014, vol. 114, no. 3, pp. 1743–1760.

    Article  CAS  Google Scholar 

  2. Pässler, P., Hefner, W., Buckl, K., Meinass, H., Meiswinkel, A., Wernicke, H.-J., Ebersberg, G., Müller, R., Bäsler, J., Behringer, H., and Mayer, D., in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, 2000, vol. 1, pp. 277–326. https://www.ugr.es/ ~tep028/pqi/descargas/Industria%20quimica%20organica/tema_3/acetileno_a01_097.pdf. Cited July 9, 2022.

  3. European Commission Official Website. European climate law. https://ec.europa.eu/clima/policies/eu-climate-action/law_en. Cited August 25, 2021.

  4. Arutyunov, V.S., Golubeva, I.A., Eliseev, O.L., and Zhagfarov, F.G., Tekhnologiya pererabotki uglevodorodnykh gazov: Uchebnik dlya vuzov (Technology for the Processing of Hydrocarbon Gases: Textbook for Universities), Moscow: Yurait, 2021.

  5. PR Newswire Official Website. www.prnewswire.com/ news-releases/acetylene-industry-review-2015-2019-and-forecast-to-2030–growing-applications-across-various-industries-301005161.html. Cited August 25, 2021.

  6. Materials and Chemicals/Acetylene Market. www.reportsanddata.com/report-detail/acetylene-market. Cited august 25, 2021.

  7. Globe Newswire Official Website. www.globenewswire.com/news-release/2019/04/12/1803145/0/en/Global-Acetylene-Gas-Market-is-Projected-to-Grow-at-US-6090-Mn-by-2025-End-QY-Research-Inc.html. Cited August 25, 2021.

  8. Statista Official Website. Market value of acetylene worldwide in 2019 and 2027. www.statista.com/statistics/933160/global-market-value-of-acetylene. Cited August 25, 2021.

  9. Market Intellica Official Websiye. www.marketintellica.com/report/MI42508-global-acetylene-gas-market-study-2016. Cited August 25, 2021.

  10. Kudryashova, I., Kharlampenkov, E., Zakharova, N., and Kolevatova, A., Abstract of Papers, Proc. III Int. Innovative Min. Symp., 2018, vol. 41, paper no. 02025. https://doi.org/10.1051/e3sconf/20184102025

  11. https://ru.scribd.com/doc/40218529/Petrochemical-Industry-Overview-Chemical-Economics-Handbook-SRI-Consulting. Cited August 25, 2021.

  12. IEA Official Website. www.iea.org/reports/the-future-of-petrochemicals. Cited August 25, 2021.

  13. HIS Markit Official Website. Ethylene via ethane steam cracking. https://ihsmarkit.com/products/chemical-technology-pep-ethylene-ethane-steam-cracking-29h.html. Cited August 25, 2021.

  14. Wang, B., He, L., Yuan, X.-C., Sun, Z.-M., and Liu, P., J. Cleaner Prod., 2021, vol. 295, p. 126377. https://doi.org/10.1016/j.jclepro.2021.126377

    Article  CAS  Google Scholar 

  15. Huo, H., Liu, X., Wen, Z., Lou, G., Dou, R., Su, F., Zhou, W., and Jiang, Z., Energy, 2021, vol. 228, p. 120566. https://doi.org/10.1016/j.energy.2021.120566

    Article  CAS  Google Scholar 

  16. Teong, S.P. and Zhang, Y., J. Bioresour. Bioprod., 2020, vol. 5, pp. 96–100.

    Article  CAS  Google Scholar 

  17. Guo, J. and Zheng, D., Ind. Eng. Chem. Res., 2021, vol. 51, no. 41, pp. 13414–13422.

    Article  Google Scholar 

  18. Diercks, R., Arndt, J.-D., Freyer, S., Geier, R., Machhammer, O., Schwartze, J., and Volland, M., Chem. Eng. Technol., 2008, vol. 31, no. 5, pp. 631–637.

    Article  CAS  Google Scholar 

  19. Mi, Y., Zheng, D., and Jiang, X., J. Cleaner Prod., 2016, vol. 112, pp. 1676–1682.

    Article  CAS  Google Scholar 

  20. Mi, Y., Zheng, D., Guo, J., Chen, X., and Jin, P., Fuel Process. Technol., 2014, vol. 119, pp. 305–315. https://doi.org/10.1016/j.fuproc.2013.10.027

    Article  CAS  Google Scholar 

  21. Mustafa, A., Lougou, B.G., Shuai, Y., Wang, Z., and Tan, H., J. Energy Chem., 2020, vol. 49, pp. 96–123. https://doi.org/10.1016/j.jechem.2020.01.023

    Article  Google Scholar 

  22. Kanniche, M., Gros-Bonnivard, R., Jaud, P., Valle-Marcos, J., Amann, J.-M., and Bouallou, C., Appl. Therm. Eng., 2010, vol. 30, no. 1, pp. 53–62. https://doi.org/10.1016/j.applthermaleng.2009.05.005

    Article  CAS  Google Scholar 

  23. Bhown, A.S. and Freeman, B.C., Environ. Sci. Technol., 2011, vol. 45, no. 20, pp. 8624–8632.

    Article  CAS  Google Scholar 

  24. Li, A., Song, H., Xu, X., Meng, H., Lu, Y., and Li, C., ACS Sustainable Chem. Eng., 2018, vol. 6, no. 8, pp. 9560–9565. https://doi.org/10.1021/acssuschemeng.8b01864

    Article  CAS  Google Scholar 

  25. Li, Y., Meng, H., Lu, Y., and Li, C., Ind. Eng. Chem. Res., 2016, vol. 55, no. 18, pp. 5257–5262. https://doi.org/10.1021/acs.iecr.6b00484

    Article  CAS  Google Scholar 

  26. Liu, Q., Liu, Q., Wnag, R., and Liu, Z., CIESC J., 2013, vol. 64, no. 7, pp. 2573–2579. https://doi.org/10.3969/j.issn.0438-1157.2013.07.036

    Article  CAS  Google Scholar 

  27. Safaraleeva, R.A., Abstract of Papers, Turdy Mezhdu-narodnoi nauchno-prakticheskoi konferentsii molodykh issledovatelei im. D.I., Mendeleeva (Proc. Mendeleev Int. Sci. Pract. Conf. Young Res.), Tyumen, 2016, pp. 158–160.

  28. Zhang, Q., Wang, J., and Wang, T., Ind. Eng. Chem. Res., 2016, vol. 55, no. 30, pp. 8383–8394.

    Article  CAS  Google Scholar 

  29. Liu, Y., Wang, T., Li, Q., and Wang, D., Chin. J. Chem. Eng., 2011, vol. 19, no. 3, pp. 424–433. https://doi.org/10.1016/S1004-9541(11)60002-5

    Article  CAS  Google Scholar 

  30. Fincke, J.R., Anderson, R.P., Hyde, T., Detering, B.A., Wright, R., Bewley, R.L., Haggard, D.C., and Swank, W.D., Plasma Chem. Plasma Process., 2002, vol. 22, no. 1, pp. 105–136. https://doi.org/10.1023/A:1012944615974

    Article  CAS  Google Scholar 

  31. Holmen, A., Rokstad, O.A., and Solbakken, A., Ind. Eng. Chem. Process Des. Dev., 1976, vol. 15, no. 3, pp. 439–444.

    Article  CAS  Google Scholar 

  32. Kang, H., Lee, D., Kim, K., Jo, S., Pyun, S., Song, Y., and Yu, S., Fuel Process. Technol., 2016, vol. 148, pp. 209–216. https://doi.org/10.1016/j.fuproc.2016.02.028

    Article  CAS  Google Scholar 

  33. Antonov, V.N. and Lapidus, A.S., Proizvodstvo atsetilena (Acetylene Production), Moscow: Khimiya, 1970.

    Google Scholar 

  34. Kopylov, S.N. and Gubina, T.V., Russ. J. Phys. Chem. A, 2016, vol. 90, no. 1, pp. 43–47.

    Article  CAS  Google Scholar 

  35. Likhanov, V.A. and Rossokhin, A.V., IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 734, p. 012207. https://iopscience.iop.org/article/10.1088/1757-899X/734/1/012207/ pdf. Cited July 9, 2022.

  36. Troshin, K.Ya. and Borisov, A.A., Gorenie Vzryv, 2017, vol. 10, no. 1, pp. 34–38.

    Google Scholar 

  37. Chen, L., Pannala, S., Nair, B., Lengyel, I., Baek, B., Wu, C., Retheesh VM, and West, D., Proc. Combust. Inst., 2019, vol. 37, no. 4, pp. 5715–5722. https://doi.org/10.1016/j.proci.2018.05.170

    Article  CAS  Google Scholar 

  38. US Patent 5789644, 1998.

  39. GB Patent 921305, 1963.

  40. Troshin, K.Ya., Russ. J. Phys. Chem. B, 2019, vol. 13, no. 4, pp. 577–584. https://doi.org/10.1134/S1990793119040274

    Article  CAS  Google Scholar 

  41. Hazra, C.K., Jeong, J., Kim, H., Baik, M.-H., Park, S., and Chang, S., Angew. Chem., Int. Ed., 2018, vol. 57, no. 10, pp. 2692–2696. https://doi.org/10.1002/anie.201713285

    Article  CAS  Google Scholar 

  42. Hall, K.R., Cantrell, J.G., and Weber Jr., B.R., in Natural Gas Processing from Midstream to Downstream, New York: Wiley, 2018, ch. 19, pp. 499–507. https://doi.org/10.1002/9781119269618.ch19

  43. Zhang, Q., Wang, J., and Wang, T., Ind. Eng. Chem. Res., 2017, vol. 56, no. 18, pp. 5174–5184.

    Article  CAS  Google Scholar 

  44. Porsin, A.V., Kulikov, A.V., Amosov, Yu.I., Rogozhnikov, V.N, and Noskov, A.S., Theor. Found. Chem. Eng., 2014, vol. 48, no. 4, pp. 397–403.

    Article  CAS  Google Scholar 

  45. Wang, Z., Zheng, D., and Jin, H., Int. J. Hydrogen Energy, 2007, vol. 32, no. 16, pp. 4030–4039.

    Article  CAS  Google Scholar 

  46. Garifzyanova, G.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2008, vol. 51, no. 11, pp. 98–100.

    CAS  Google Scholar 

  47. Wang, Z. and Zheng, D., Chin. J. Chem. Eng., 2008, vol. 16, no. 5, pp. 812–818. https://doi.org/10.1016/S1004-9541(08)60161-5

    Article  CAS  Google Scholar 

  48. Cao, S., Wang, D., and Wang, T., Chem. Eng. Sci., 2010, vol. 65, no. 8, pp. 2608–2618.

    Article  CAS  Google Scholar 

  49. Gladish, H., Hydrocarbon Process. Pet. Refin., 1962, vol. 41, pp. 159–164.

    Google Scholar 

  50. Slovetskii, D.I., Pet. Chem., 2006, vol. 46, no. 5, pp. 295–304.

    Article  Google Scholar 

  51. Müller, R. and Kaske, G., Erdoel Kohle, Erdgas, Petrochem. Brennst.-Chem., 1984, vol. 37, no. 4, p. 149.

    Google Scholar 

  52. Slovetskii, D.I., High Energy Chem., 2006, vol. 40, no. 2, pp. 86–92.

    Article  CAS  Google Scholar 

  53. Olsvik, O., Rokstad, O.A., and Holmen, A., Chem. Eng. Technol., 1995, vol. 18, no. 5, pp. 349–358. https://doi.org/10.1002/ceat.270180510

    Article  CAS  Google Scholar 

  54. Dinh, D.K., Lee, D.H., Song, Y.-H., Jo, S., Kim, K.-T., Igbal, M., and Kang, H., RSC Adv., 2019, vol. 9, no. 56, pp. 32403–32413. https://doi.org/10.1039/C9RA05964D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Krestinin, A.V., Combust. Flame, 2000, vol. 121, no. 3, pp. 513–524.

    Article  CAS  Google Scholar 

  56. Krestinin, A.V. and Moravsky, A.P., Chem. Phys. Lett., 1998, vol. 286, nos. 5–6, pp. 479–484.

  57. Slovetskii, D.I., Mankelevich, Yu.A., Slovetskii, S.D., and Rakhimova, T.V., High Energy Chem., 2002, vol. 36, no. 1, pp. 44–52. https://doi.org/10.1023/A:1013600628538

    Article  CAS  Google Scholar 

  58. An, H., Cheng, Y., Li, T., Li, Y., and Cheng, Y., Fuel Process. Technol., 2018, vol. 172, pp. 195–199. https://doi.org/10.1016/j.fuproc.2017.12.025

    Article  CAS  Google Scholar 

  59. Bao, W., Tian, Y., Li, F., Lu, Y., and Xie, K., CIESC J., 2008, vol. 59, no. 2, pp. 472–477. http://dx.chinadoi.cn/10.3321/j.issn:0438-1157.2008.02.034

  60. Kim, K.S., Seo, J.H., Nam, J.S., Ju, W.T., and Hong, S.H., IEEE Trans. Plasma Sci., 2005, vol. 33, no. 2, part 2, pp. 813–823.

  61. Li, J., He, F., Luo, Y., Yin, Y., Dai, X., and Xi, L., Plasma Sci. Technol., 2003, vol. 5, no. 3, pp. 1815–1820. https://doi.org/10.1088/1009-0630/5/3/010

    Article  CAS  Google Scholar 

  62. Fincke, J.R., Anderson, R.P., Hyde, T.A., and Detering, B.A., Ind. Eng. Chem. Res., 2002, vol. 41, no. 6, pp. 1425–1435. https://doi.org/10.1021/ie010722e

    Article  CAS  Google Scholar 

  63. GB Patent 958046, 1964.

  64. Bolouri, K.S. and Amouroux, J., Plasma Chem. Plasma Process., 1986, vol. 6, no. 4, pp. 335–348.

    Article  CAS  Google Scholar 

  65. Yao, S., Nakayama, A., and Suzuki, E., Catal. Today, 2001, vol. 71, nos. 1–2, pp. 219–223.

  66. Li, X.-S., Lin, C.-K., Shi, C., Xu, Y., Wang, Y.-N., and Zhu, A.-M., J. Phys. D: Appl. Phys., 2008, vol. 41, no. 17, p. 175203. https://doi.org/10.1088/0022-3727/41/17/175203

    Article  CAS  Google Scholar 

  67. Inada, Y., Matsuoka, S., Kumada, A., Ikeda, H., and Hidaka, K., J. Phys. D: Appl. Phys., 2014, vol. 47, no. 17, p. 175201. https://doi.org/10.1088/0022-3727/47/17/175201

    Article  CAS  Google Scholar 

  68. Dors, M., Nowakowska, H., Jasiński, M., and Mizeraczyk, J., Plasma Chem. Plasma Process., 2014, vol. 34, no. 2, pp. 313–326. https://doi.org/10.1007/s11090-013-9510-4

    Article  CAS  Google Scholar 

  69. Diamy, A.-M., Hrach, R., Hrachová, V., and Legrand, J.-C., Vacuum, 2001, vol. 61, nos. 2–4, pp. 403–407. https://doi.org/10.1016/S0042-207X(01)00151-8

  70. Heintze, M. and Magureanu, M., J. Appl. Phys., 2002, vol. 92, no. 5, pp. 2276–2283.

    Article  CAS  Google Scholar 

  71. Liu, C., Mallinson, R., and Lobban, L., J. Catal., 1998, vol. 179, no. 1, pp. 326–334.

    Article  CAS  Google Scholar 

  72. VYAZMA-GAS Official Website. History of Acetylene. http://vyazma-gas.ru/index.php/poleznaya-informatsiya/2015-01-25-16-12-15/istoriya-atsetilena. Cited August 25, 2021.

  73. Bittner, D. and Wanzl, W., Fuel Process. Technol., 1990, vol. 24, pp. 311–316.

    Article  CAS  Google Scholar 

  74. US Patent 4378232, 1983.

  75. Wang, F., Guo, W., Yuan, X., and Zhao, T., Plasma Sci. Technol., 2006, vol. 8, no. 3, p. 307. https://doi.org/10.1088/1009-0630/8/3/13

    Article  CAS  Google Scholar 

  76. Yan, B., Xu, P., Guo, C.Y., Jin, Y., and Cheng, Y., Chem. Eng. J., 2012, vols. 207–208, pp. 109–116. https://doi.org/10.1016/j.cej.2012.05.111

  77. Jupudi, R.S., Zamansky, V., and Fletcher, T.H., Energy Fuels, 2009, vol. 23, no. 6, pp. 3063–3067.

    Article  CAS  Google Scholar 

  78. Fletcher, T.H., Barfuss, D., and Pugmire, R.J., Energy Fuels, 2015, vol. 29, no. 8, pp. 4921–4926.

    Article  CAS  Google Scholar 

  79. Richards, A.P. and Fletcher, T.H., Fuel, 2016, vol. 185, pp. 171–180.

    Article  CAS  Google Scholar 

  80. Ma, J., Su, B., Wen, G., Yang, Q., Ren, Q., Yang, Y., and Xing, H., Fuel Process. Technol., 2017, vol. 167, pp. 721–729. https://doi.org/10.1016/j.fuproc.2017.06.022

    Article  CAS  Google Scholar 

  81. Yue, S., Wu, C., Yan, B., and Yi, C., Energy Fuels, 2010, vol. 24, no. 5, pp. 2991–2998. https://doi.org/10.1021/ef9015813

    Article  CAS  Google Scholar 

  82. Wu, C., Chen, J., and Cheng, Y., Fuel Process. Technol., 2010, vol. 91, no. 8, pp. 823–830.

    Article  CAS  Google Scholar 

  83. Chen, L., Meng, Y., Shen, J., Shu, X., Fang, S., and Xiong, X., J. Phys. D: Appl. Phys., 2009, vol. 42, no. 5, p. 055505. https://doi.org/10.1088/0022-3727/42/5/055505

    Article  CAS  Google Scholar 

  84. Bao, W.R., Chang, L.P., and Lu, Y.K., Process Saf. Environ. Prot., 2006, vol. 84, no. 3, pp. 222–226.

    Article  CAS  Google Scholar 

  85. US Patent 4588850, 1986.

  86. Berkowitz, N., An Introduction to Coal Technology, New York: Academic Press, 1979.

    Google Scholar 

  87. Peuckert, C. and Müller, R., Abstract of Papers, Proc. VII Int. Symp. Plasma Chem., Eindhoven, The Netherlands, 1985, pp. 274–279.

  88. Yan, B., Lu, W., and Cheng, Y., Green Process. Synth., 2012, vol. 1, no. 1, pp. 33–47. https://doi.org/10.1515/greenps-2011-0024

    Article  CAS  Google Scholar 

  89. Zhang, M., Ma, J., Su, B., Wen, G., Yang, Q., and Ren, Q., Energies, 2017, vol. 10, no. 4, p. 513. https://doi.org/10.3390/en10040513

    Article  CAS  Google Scholar 

  90. Zhang, M., Ma, J., Wen, G., Yang, Q., Su, B., and Ren, Q., Chem. Eng. Process., 2018, vol. 128, pp. 257–262. https://doi.org/10.1016/j.cep.2018.04.021

    Article  CAS  Google Scholar 

  91. López, J.A. and Lu, C., IEEE Trans. Power Syst., 2020, vol. 35, no. 5, pp. 3459–3469.

    Article  Google Scholar 

  92. Arora, K., Kumar, A., Kamboj, V.K., Prashar, D., Shrestha, B., and Joshi, G.P., Mathematics, 2021, vol. 9, no. 2, p. 186. https://doi.org/10.3390/math9020186

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Shlyapin, T. N. Afonasenko, D. V. Glyzdova, N. N. Leont’eva or A. V. Lavrenov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shlyapin, D.A., Afonasenko, T.N., Glyzdova, D.V. et al. Acetylene Production Technologies in the 21st Century: Main Trends of Their Development in the Paradigm of Low-Carbon Economy of the Future. Catal. Ind. 14, 251–267 (2022). https://doi.org/10.1134/S2070050422030023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050422030023

Keywords:

Navigation