Skip to main content
Log in

Mononuclear Iron(III) Piperazine-Derived Complexes and Application in the Oxidation of Cyclohexane

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Oxygenated products from selective hydrocarbon oxidation have high commercial value as industrial feedstocks. One of the most important industrial processes is the cyclohexane oxidation to produce cyclohexanol and cyclohexanone. These organic substances have special importance in the Nylon manufacture as well as building blocks for a variety of commercially useful products. In this work we present the synthesis and characterization of a new mononuclear piperazine-derived series of iron(III) complexes and their catalytic activity towards cyclohexane oxidation essays. All complexes present octahedral high-spin iron(III) center according to elemental analysis, FTIR, UV-VIS and Mössbauer spectroscopy characterization. The cyclohexane oxidation resulted in cyclohexanol, cyclohexanone and cyclohexyl hydroperoxide as products, with yields up to 39%. The best results were obtained with the complex (NH4)[Fe(BPPZ)Cl2] (BPPZ: lithium 1,4-bis(propanoate)piperazine) and with hydrogen peroxide as oxidant. The reactions were carried out at room temperature and atmospheric pressure, which incomes a great advantage over the current industrial process of cyclohexane production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Costas, M., Chen, K., and Que, L.Jr., Coord. Chem. Rev., 2000, vols. 200–202, pp. 517–544.

  2. Cavani, F. and Teles, J.H., ChemSusChem, 2009, vol. 2, pp. 508–534.

    Article  CAS  Google Scholar 

  3. Vedrine, J.C., J. Energy Chem., 2006, vol. 25, pp. 936–946.

    Article  Google Scholar 

  4. Kim, A.-R., Ahn, S., Yoon, T.-U., Notestein, J.M., Farha, O.K., and Bae, Y.-S., ChemCatChem, 2019, vol. 11, pp. 5650–5656.

    Article  CAS  Google Scholar 

  5. Labinger, J.A., J. Mol. Catal. A: Chem., 2004, vol. 220, pp. 27–35.

    Article  CAS  Google Scholar 

  6. Shul'pin, G.B., Catalysts, 2016, vol. 6, pp. 1–40.

    Google Scholar 

  7. Schuchardt, U., Cardoso, D., Sercheli, R., Pereira, R., Da Cruz, R.S., Guerreiro, M.C., Mandelli, D., Spinacé, E.V., and Pires, R.L., Appl. Catal., A, 2001, vol. 211, no. 1, pp. 1–17.

  8. Schuchardt, U., Pereira, R., and Rufo, M., J. Mol. Catal. A: Chem., 1998, vol. 135, pp. 257–262.

    Article  CAS  Google Scholar 

  9. Yan, C., Fraga-Dubreuil, J., Garcia-Verdugo, E., Hamley, P.A., Poliakoff, M., Pearson, I., and Coote, S., Green Chem., 2008, vol. 10, pp. 98–103.

    Article  CAS  Google Scholar 

  10. Denisov, I.G., Makris, T.M., Sligar, S.G., and Schlichting, I., Chem. Rev., 2005, vol. 105, pp. 2253–2278.

    Article  CAS  Google Scholar 

  11. Feig, A.L. and Lippard, S.J., Chem. Rev., 1994, vol. 94, pp. 759–805.

    Article  CAS  Google Scholar 

  12. Schlichting, I., Berendzer, J., Chu, K., Stock, A.M., Maves, S.A., Benson, D.E., Sweet, R.M., Ringe, D., Petsko, G.A., and Sligar, S.G., Science, 2000, vol. 287, pp. 1615–1622.

    Article  CAS  Google Scholar 

  13. Nesterov, D.S., Nesterova, O.V., and Pombeiro, A.J.L., Coord. Chem. Rev., 2018, vol. 355, pp. 199–222.

    Article  CAS  Google Scholar 

  14. Dupont, J., Quím. Nova, 2000, vol. 23, pp. 825–831.

    Article  CAS  Google Scholar 

  15. Olsen, M.H.N., Salomão, G.C., Drago, V., Fernandes, C., Horn A.Jr., Cardozo Filho, L., and Antunes, O.A.C., J. Supercrit. Fluids, 2005, vol. 34, pp. 119–124.

    Article  CAS  Google Scholar 

  16. Carvalho, N.M.F. and Horn, A., Jr., and Antunes, O.A.C., Appl. Catal., A, 2006, vol. 305, no. 2, pp. 140–145.

  17. Esmelindro, M.C., Oestreicher, E.G., Marquez-Alvarez, H., Dariva, C., Egues, S.M.S., Fernandes, C., Bortoluzzi, A.J., Drago, V., and Antunes, O.A.C.J., Inorg. Biochem., 2005, vol. 99, pp. 2054–2061.

    Article  CAS  Google Scholar 

  18. Leising, R.A., Norman, R.E., and Que, L., Jr., Inorg. Chem., 1990, vol. 29, pp. 2553–2555.

    Article  CAS  Google Scholar 

  19. Wang, Y., Wen, X., Rong, C., Tang, S., Wu, W., Zhang, C., Liu, Y., and Fu, Z., J. Mol. Catal. A: Chem., 2016, vol. 411, pp. 103–109.

    Article  CAS  Google Scholar 

  20. Xu, S., Draksharapu, A., Rasheed, W., and Que, L.Jr., J. Am. Chem. Soc., 2019, vol. 141, pp. 16093–16107.

    Article  CAS  Google Scholar 

  21. Ayad, M., Gebbink, R.J.M.K., Mest, Y.L., Schollhammer, P., Poul, N.L., Pétillon, F.Y., and Mandon, D., Dalton Trans., 2018, vol. 47, pp. 15596–15612.

    Article  CAS  Google Scholar 

  22. Chen, L., Su, X.-J., and Jurss, J.W., Organometallics, 2018, vol. 37, pp. 4535–4539.

    Article  CAS  Google Scholar 

  23. Vailati, A.F., Huelsmann, R.D., Martendal, E., Bortoluzzi, A.J., Xavier, F.R., and Peralta, R.A., New J. Chem., 2020, vol. 44, pp. 2514–2526.

    Article  CAS  Google Scholar 

  24. Lyakin, O.Y., Bryliakov, K.P., and Talsi, E.P., Coord. Chem. Rev., 2019, vol. 384, pp. 126–139.

    Article  CAS  Google Scholar 

  25. Zima, A.M., Lyakin, O.Y., Bryliakov, K.P., and Talsi, E.P., ChemCatChem, 2019, vol. 11, pp. 5345–5352.

    Article  CAS  Google Scholar 

  26. Kant, R., and Maji, S., Dalton Trans., 2021, vol. 50, pp. 785–800.

    Article  CAS  Google Scholar 

  27. Antunes, O.A.C., Bordinhao, J., Carvalho, N.M.F., Wardell, J.L., Arroyo, P.A., Berezuk, M.E., Cardozo-Filho, L., and Tiekink, E.R.T., J. Chem. Crystallogr., 2007, vol. 37, pp. 291–298.

    Article  CAS  Google Scholar 

  28. Berezuk, M.E., Rossi, C.C.R.S., Carvalho, N.M.F., Arroyo, P.A., Dariva, C., Horn, A., and Cardozo-Filho, L., Int. J. Chem. React. Eng., 2011, vol. 9, p. A48.

    Google Scholar 

  29. Berezuk, M.E., Paesano, A., Jr., Carvalho, N.M.F., Horn, A., Jr., Arroyo, P.A., and Cardozo-Filho, L., Quím. Nova, 2012, vol. 35, no. 5, pp. 876–882.

    Article  CAS  Google Scholar 

  30. Carvalho, N.M.F. and Horn, A.Jr., Bortoluzzi, A.J., Drago, V., and Antunes, O.A.C., Inorg. Chim. Acta, 2006, vol. 359, pp. 90–98.

    Article  CAS  Google Scholar 

  31. Li, G., Lü, J., Li, X., Yang, H., Xu, B., and Cao, R., CrystEngComm, 2010, vol. 12, pp. 3780–3785.

    Article  Google Scholar 

  32. Rodriguez, M.-C., Lambert, F., Morgenstern-Badarau, I., Cesario, M., Guilhem, J., Keita, B., and Nadjo, L., Inorg. Chem., 1997, vol. 36, pp. 3525–3531.

    Article  CAS  Google Scholar 

  33. Carvalho, N.M.F., Antunes, O.A.C., and Horn, A., Jr., Dalton Trans., 2007, vol. 10, pp. 1023–1027.

    Article  Google Scholar 

  34. Kumar, M.S., Schwidder, M., Grunert, W., and Bruckner, A., J. Catal., 2004, vol. 227, pp. 384–397.

    Article  CAS  Google Scholar 

  35. Bordiga, S., Buzzoni, R., Geobaldo, F., Lamberti, C., Giamello, E., Zecchina, A., Tozzola, G., and Vlaic, G., J. Catal., 1996, vol. 158, pp. 486–501.

    Article  CAS  Google Scholar 

  36. Tetard, D. and Verlhac, J.B., J. Mol. Catal. A: Chem., 1996, vol. 113, pp. 223–230.

    Article  CAS  Google Scholar 

  37. Li, R., Fan, B., and Fan, W., J. Mol. Catal. A: Chem., 2003, vol. 201, pp. 137–144.

    Article  Google Scholar 

  38. Nizova, G.V., Kozlov, Y.N., and Shul’pin, G.B., Rus. Chem. Bull., 2004, vol. 53, pp. 2330–2333.

    Article  CAS  Google Scholar 

  39. Shul'pin, G.B., C. R. Chim., 2003, vol. 6, pp. 163–178.

    Article  CAS  Google Scholar 

  40. Barton, D.H.R., Tetrahedron Lett., 1998, vol. 54, pp. 5805–5817.

    Article  CAS  Google Scholar 

  41. Barton, D.H.R., Halley, F., Ozbalik, N., Schmitt, M., Young, E., and Balavoine, G., J. Am. Chem. Soc., 1989, vol. 111, pp. 7144–7149.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors thank National Council for Scientific and Technological Development (CNPq), Coordination for the Improvement of Higher Education Personnel (CAPES), Federal University of Technology—Paraná (UTFPR), Chemical Engineering Department of Maringá State University (DEQ-UEM).

Funding

Research Support Foundation of the State of Rio de Janeiro (FAPERJ) and José Bonifácio University Foundation (FUJB) for the financial support to the present work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Márcio E. Berezuk, Rafael B. Samulewski, Nakédia M. F. Carvalho, Andrea Paesano Jr., Pedro A. Arroyo or Lúcio Cardozo-Filho.

Additional information

The paper is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Márcio E. Berezuk, Samulewski, R.B., Carvalho, N.M. et al. Mononuclear Iron(III) Piperazine-Derived Complexes and Application in the Oxidation of Cyclohexane. Catal. Ind. 13, 309–316 (2021). https://doi.org/10.1134/S2070050421040036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421040036

Keywords:

Navigation