Skip to main content
Log in

γ-Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components

  • BIOCATALYSIS
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

γ-Valerolactone (GVL) is a valuable chemical compound known as a platform molecule. It is considered as an intermediate product for the synthesis of chemical compounds with high added value, components of motor fuels, and biopolymers. GVL is well established as an environmentally safe solvent, fuel additive, flavoring, and nutritional supplement. This review summarizes the latest advances in the development of catalytic ways of GVL synthesis from levulinic acid (LA), alkyl levulinates (ALs), and carbohydrates and plant polymers. Special attention is given to heterogeneous catalysts based on metals and metal oxides, which are more promising for practical application. Proposed mechanisms of the processes are considered in detail, and the prospect of using hydrogen-donor solvents in the processes of GVL production is discussed. Catalysts demonstrating the best catalytic properties are compared from the viewpoint of their productivity, an important parameter for industrial catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Choi, Y.J. and Lee, S.Y., Nature, 2013, vol. 502, no. 7472, pp. 571–574.

    Article  CAS  PubMed  Google Scholar 

  2. Jakob, M. and Hilaire, J., Nature, 2015, vol. 517, no. 7533, pp. 150–152.

    Article  CAS  PubMed  Google Scholar 

  3. Reche, M.T., Osatiashtiani, A., Durndell, L.J., Isaacs, M.A., Silva, Â., Lee, A.F., Wilson, K., Catal. Sci. Technol., 2016, vol. 6, no. 19, pp. 7334–7341.

    Article  CAS  Google Scholar 

  4. Zhang, Z. and Deng, K., ACS Catal., 2015, vol. 5, no. 11, pp. 6529–6544.

    Article  CAS  Google Scholar 

  5. Huber, G.W., Iborra, S., and Corma, A., Chem. Rev., 2006, vol. 106, no. 9, pp. 4044–4098.

    Article  CAS  PubMed  Google Scholar 

  6. Kamm, B., Angew. Chem., Int. Ed. Engl., 2007, vol. 46, no. 27, pp. 5056–5058.

    Article  CAS  Google Scholar 

  7. Weingarten, R., Tompsett, G.A., Conner, W.C. Jr., and Huber, G.W., J. Catal., 2011, vol. 279, no. 1, pp. 174–182.

    Article  CAS  Google Scholar 

  8. Tuck, C.O., Pérez, E., Horváth, I.T., Sheldon, R.A., and Poliakoff, M., Science, 2012, vol. 337, no. 6095, pp. 695–699.

    Article  CAS  PubMed  Google Scholar 

  9. Werpy, T., Petersen, G., Aden, A., Bozell, J., and Holladay, J., Top Value Added Chemicals from Biomass, vol. 1: Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Washington, DC: US Department of Energy, 2004. https://www.nrel.gov/docs/ fy04osti/35523.pdf. Cited July 0, 2021.

  10. Upare, P.P., Lee, J.-M., Hwang, Y.K., Hwang, D.W., Lee, J.-H., Halligudi, S.B., Hwang, J.-S., and Chang, J.S., ChemSusChem, 2011, vol. 4, no. 12, pp. 1749–1752.

    Article  CAS  PubMed  Google Scholar 

  11. Luska, K.L., Migowski, P., and Leitner, W., Green Chem., 2015, vol. 17, no. 6, pp. 3195–3206.

    Article  CAS  Google Scholar 

  12. Zhang, Z., Zhen, J., Liu, B., Lv, K., and Deng, K., Green Chem., 2015, vol. 17, no. 2, pp. 1308–1317.

    Article  CAS  Google Scholar 

  13. Venderbosch, R.H., ChemSusChem, 2018, vol. 8, no. 8, pp. 1306–1316.

    Article  CAS  Google Scholar 

  14. Dawes, G.J.S. and Scott, E.L., Le Nôtre, J., Johan P.M. Sanders, J.P.M., and Bitter, J.H., Green Chem., 2015, vol. 17, no. 6, pp. 3231–3250.

    Article  CAS  Google Scholar 

  15. Bohre, A., Dutta, S., Saha, B., and Abu-Omar, M.M., ACS Sustainable Chem. Eng., 2015, vol. 3, no. 7, pp. 1263–1277.

    Article  CAS  Google Scholar 

  16. Liguori, F., Moreno-Marrodan, C., and Barbaro, P., ACS Catal., 2015, vol. 5, no. 3, pp. 1882–1894.

    Article  CAS  Google Scholar 

  17. Alonso, D.M., Wettstein, S.G., and Dumesic, J.A., Green Chem., 2013, vol. 15, no. 3, pp. 584–595.

    Article  CAS  Google Scholar 

  18. Mehdi, H., Fábos, V., Tuba, R., Bodor, A., Mika, L.T., and Horváth, I.T., Top. Catal., 2008, vol. 48, no. 1, pp. 49–54.

    Article  CAS  Google Scholar 

  19. Weingarten, R., Conner, W.C., and Huber, G.W., Energy Environ. Sci., 2012, vol. 5, no. 6, pp. 7559–7574.

    Article  CAS  Google Scholar 

  20. Horváth, I.T., Mehdi, H., Fábos, V., Boda, L., and Mika, L.T., Green Chem., 2008, vol. 10, no. 2, pp. 238–242.

    Article  Google Scholar 

  21. Tukacs, J.M., Fridrich, B., Dibó, G., Székely, E., and Mika, L.T., Green Chem., 2015, vol. 17, no. 12, pp. 5189–5195.

    Article  CAS  Google Scholar 

  22. Osatiashtiani, A., Lee, A.F., and Wilson, K., J. Chem. Technol. Biotechnol., 2017, vol. 92, no. 6, pp. 1125–1135.

    Article  CAS  Google Scholar 

  23. Van de Vyver, S., Thomas, J., Geboers, J., Keyzer, S., Smet, M., Dehaen, W., Jacobs, P.A., and Sels, B.F., Energy Environ. Sci., 2011, vol. 4, no. 9, pp. 3601–3610.

    Article  CAS  Google Scholar 

  24. Girisuta, B., Janssen, L.P.B.M., and Heeres, H.J., Chem. Eng. Res. Des., 2006, vol. 84, no. 5, pp. 339–349.

    Article  CAS  Google Scholar 

  25. Lange, J.P., van der Heide, E., van Buijtenen, J., and Price, R., ChemSusChem, 2012, vol. 5, no. 1, pp. 150–166.

    Article  CAS  PubMed  Google Scholar 

  26. Maldonado, G.M.G., Assary, R.S., Dumesic, J., and Curtiss, L.A., Energy Environ. Sci., 2012, vol. 5, no. 5, pp. 6981–6989.

    Article  CAS  Google Scholar 

  27. Ismalaj, E., Strappaveccia, G., Ballerini, E., Elisei, F., Piermatti, O., Gelman, D., and Vaccaro, L., ACS Sustainable Chem. Eng., 2014, vol. 2, no. 10, pp. 2461–2464.

    Article  CAS  Google Scholar 

  28. Meng, X., Bhagia, S., Wang, Y., Zhou, Y., Pu, Y., Dunlap, J.R., Shuai, L., Ragauskas, A.J., and Yoo, C.G., Ind. Crops Prod., 2020, vol. 146. https://doi.org/10.1016/j.indcrop.2020.112144

  29. Wu, P., Li, L., Sun, Y., Song, B., Yu, Y., and Liu, H., Bioresour. Technol., 2020, vol. 305. https://doi.org/10.1016/j.biortech.2020.123040

  30. Granados, M.L. and Alba-Rubio, A.C., Sádaba, I., Mariscal, R., Mateos-Aparicio, I., and Heras, Á., Green Chem., 2011, vol. 13, no. 11, pp. 3203–3212.

  31. Xing, R., Qi, W., and Huber, G.W., Energy Environ. Sci., 2011, vol. 4, no. 6, pp. 2193–2205.

  32. Weingarten, R., Cho, J., Conner, W.C.Jr., and Huber, G.W., Green Chem., 2010, vol. 12, no. 8, pp. 1423–1429.

    Article  CAS  Google Scholar 

  33. Chheda, J.N., Román-Leshkov, Y., and Dumesic, J.A., Green Chem., 2007, vol. 9, no. 4, pp. 342–350.

    Article  CAS  Google Scholar 

  34. Sen, S.M., Alonso, D.M., Wettstein, S.G., Gurbuz, E.I., Henao, C.A., Dumesic, J.A., and Maravelias, C.T., Energy Environ. Sci., 2012, vol. 5, no. 12, pp. 9690–9697.

    Article  CAS  Google Scholar 

  35. Gürbüz, E.I., Gallo, J.M.R., Alonso, D.M., Wettstein, S.G., Lim, W.Y., and Dumesic, J.A., Angew. Chem., Int. Ed. Engl., 2013, vol. 52, no. 4, pp. 1270–1274.

    Article  CAS  Google Scholar 

  36. Dutta, S., Yu, I.K.M., Tsang, D.C.W., Su, Z., Hu, C., Wu, K.C.W., Yip, A.C.K., Ok, Y.S., and Poon, C.S., Bioresour. Technol., 2020, vol. 298. https://doi.org/10.1016/j.biortech.2019.122544

  37. Guan, C.-Y., Chen, S.S., Lee, T.-H., Yu, C.-P., and Tsang, D.C.W., J. Cleaner Prod., 2020, vol. 260. https://doi.org/10.1016/j.jclepro.2020.121097

  38. Alonso, D.M., Bond, J.Q., Serrano-Ruiz, J.C., and Dumesic, J.A., Green Chem., 2010, vol. 12, no. 6, pp. 992–999.

    Article  CAS  Google Scholar 

  39. Pham, H.N., Pagan-Torres, Y.J., Serrano-Ruiz, J.C., Wang, D., Dumesic, J.A., and Datye, A.K., Appl. Catal., A, 2011, vol. 397, nos. 1–2, pp. 153–162.

  40. Serrano-Ruiz, J.C., Wang, D., and Dumesic, J.A., Green. Chem., 2010, vol. 12, no. 4, pp. 574–577.

    Article  CAS  Google Scholar 

  41. Bond, J.Q., Wang, D., Alonso, D.M., and Dumesic, J.A., J. Catal., 2011, vol. 281, no. 2, pp. 290–299.

    Article  CAS  Google Scholar 

  42. Bond, J.Q., Alonso, D.M., Wang, D., West, R.M., and Dumesic, J.A., Science, 2010, vol. 327, no. 5969, pp. 1110–1114.

    Article  CAS  PubMed  Google Scholar 

  43. Zhao, Y., Fu, Y., and Guo, Q.-X., Bioresour. Technol., 2012, vol. 114, pp. 740–744.

    Article  CAS  PubMed  Google Scholar 

  44. Song, Y., Zhu, X., Song, Y., Wang, Q., and Xu, L., Appl. Catal., A, 2006, vol. 302, no. 1, pp. 69–77.

  45. Xiong, H., Pham, H.N., and Datye, A.K., J. Catal., 2013, vol. 302, pp. 93–100.

    Article  CAS  Google Scholar 

  46. Corbel-Demailly, L., Ly, B.-K., Minh, D.-P., Tapin, B., Especel, C., Epron, F., Cabiac, A., Guillon, E., Besson, M., and Pinel, C., ChemSusChem, 2013, vol. 6, no. 12, pp. 2388–2395.

    Article  CAS  PubMed  Google Scholar 

  47. Li, M., Li, G., Li, N., Wang, A., Dong, W., Wang, X., and Cong, Y., Chem. Commun., 2014, vol. 50, no. 12, pp. 1414–1416.

    Article  CAS  Google Scholar 

  48. Chalid, M., Heeres, H.J., and Broekhuis, A.A., Procedia Chem., 2012, vol. 4, pp. 260–267.

    Article  CAS  Google Scholar 

  49. Bond, J.Q., Alonso, D.M., West, R.M., and Dumesic, J.A., Langmuir, 2010, vol. 26, no. 21, pp. 16291–16298.

    Article  CAS  PubMed  Google Scholar 

  50. Oser, B.L., Carson, S., and Oser, M., Food Cosmet. Toxicol., 1965, vol. 3, pp. 563–569.

    Article  CAS  PubMed  Google Scholar 

  51. Marinetti, L.J., Leavell, B.J., Jones, C.M., Hepler, B.R., Isenschmid, D.S., and Commissaris, R.L., Pharmacol., Biochem. Behav., 2012, vol. 101, no. 4, pp. 602–608.

    Article  CAS  Google Scholar 

  52. Yan, K., Liao, J., Wu, X., and Xie, X., RSC Adv., 2013, vol. 3, no. 12, pp. 3853–3856.

    Article  CAS  Google Scholar 

  53. Braden, D.J., Henao, C.A., Heltzel, J., Maravelias, C.C., and Dumesic, J.A., Green Chem., 2011, vol. 13, no. 7, pp. 1755–1765.

    Article  CAS  Google Scholar 

  54. Ortiz-Cervantes, C., Flores-Alamo, M., and García, J.J., ACS Catal., 2015, vol. 5, no. 3, pp. 1424–1431.

    Article  CAS  Google Scholar 

  55. Fábos, V., Mika, L.T., and Horváth, I.T., Organometallics, 2014, vol. 33, no. 1, pp. 181–187.

    Article  CAS  Google Scholar 

  56. Zhang, L., Mao, J., Li, S., Yin, J., Sun, X., Guo, X., Song, C., and Zhou, J., Appl. Catal., B, 2018, vol. 232, pp. 1–10.

    Article  CAS  Google Scholar 

  57. Lomate, S., Sultana, A., and Fujitani, T., Catal. Lett., 2018, vol. 148, no. 1, pp. 348–358.

    Article  CAS  Google Scholar 

  58. Deng, L., Zhao, Y., Li, J., Fu, Y., Liao, B., and Guo, Q.-X., ChemSusChem, 2010, vol. 3, no. 10, pp. 1172–1175.

    Article  CAS  PubMed  Google Scholar 

  59. Deng, L., Li, J., Lai, D.-M., Fu., Y., and Guo, Q.-X., Angew. Chem., Int. Ed. Engl., 2009, vol. 121, no. 35, pp. 6651–6654.

    Article  Google Scholar 

  60. Yuan, J., Li, S.-S., Yu, L., Liu, Y.-M., Cao,Y., He, H.-Y., and Fan, K.-N., Energy Environ. Sci., 2013, vol. 6, no. 11, pp. 3308–3313.

    Article  CAS  Google Scholar 

  61. Heeres, H., Handana, R., Chunai, D., Rasrendra, C.B., Girisuta, B., and Heeres, H.J., Green Chem., 2009, vol. 11, no. 8, pp. 1247–1255.

    Article  CAS  Google Scholar 

  62. Kopetzki, D. and Antonietti, M., Green Chem., 2010, vol. 12, no. 4, pp. 656–660.

    Article  CAS  Google Scholar 

  63. Chia, M. and Dumesic, J.A., Chem. Commun., 2011, vol. 47, no. 44, pp. 12233–12235.

    Article  CAS  Google Scholar 

  64. Hengne, A.M. and Rode, C.V., Green Chem., 2012, vol. 14, no. 4, pp. 1064–1072.

    Article  CAS  Google Scholar 

  65. Yan, K., Yang, Y., Chai, J., and Lu, Y., Appl. Catal., B, 2015, vol. 179, pp. 292–304.

    Article  CAS  Google Scholar 

  66. Cai, B., Zhou, X.-C., Miao, Y.-C., Luo, J.-Y., Pan, H., and Huang, Y.-B., ACS Sustainable Chem. Eng., 2017, vol. 5, no. 2, pp. 1322–1331.

    Article  CAS  Google Scholar 

  67. Gupta, S.S.R. and Kantam, M.L., Catal. Today, 2018, vol. 309, pp. 189–194.

    Article  CAS  Google Scholar 

  68. Chuah, G.K., Jaenicke, S., Zhu, Y.Z., and Liu, S.H., Curr. Org. Chem., 2006, vol. 10, no. 13, pp. 1639–1654.

    Article  CAS  Google Scholar 

  69. Rao, R.S., Walters, A.B., and Vannice, M.A., J. Phys. Chem. B, 2005, vol. 109, no. 6, pp. 2086–2092.

    Article  CAS  PubMed  Google Scholar 

  70. Yurieva, T.M., Catal. Today, 1999, vol. 51, nos. 3–4, pp. 457–467.

  71. Lemcoff, N.O., J. Catal., 1977, vol. 46, no. 3, pp. 356–364.

    Article  CAS  Google Scholar 

  72. Fouilloux, P., Appl. Catal., 1983, vo9l. 8, no. 1, pp. 1–42.

  73. Chang, N.-S., Aldrett, S., Holtzapple, M.T., and Davison, R.R., Chem. Eng. Sci., 2000, vol. 55, no. 23, pp. 5721–5732.

    Article  CAS  Google Scholar 

  74. Wright, W.R.H., and Palkovits, R., ChemSusChem, 2012, vol. 5, no. 9, pp. 1657–1667.

    Article  CAS  PubMed  Google Scholar 

  75. Kuwahara, Y., Kango, H., and Yamashita, H., ACS Sustainable Chem. Eng., 2017, vol. 5, no. 1, pp. 1141–1152.

    Article  CAS  Google Scholar 

  76. He, J., Li, H., Liu, Y., Zhao, W., Yang, T., Xue, W., and Yang, S., J. Ind. Eng. Chem., 2016, vol. 43, pp. 133–141.

    Article  CAS  Google Scholar 

  77. Wettstein, S.G., Alonso, D.M., Chong, Y., and Dumesic, J.A., Energy Environ. Sci., 2012, vol. 5, no. 8, pp. 8199–8203.

    Article  CAS  Google Scholar 

  78. Qi, L. and Horváth, I.T., ACS Catal., 2012, vol. 2, no. 11, pp. 2247–2249.

    Article  CAS  Google Scholar 

  79. Morrison, R.T. and Boyd, R.N., Organic Chemistry, Boston, MA: Allyn and Bacon, 1983, pp. 813–885.

    Google Scholar 

  80. Serrano-Ruiz, J.C., West, R.M., and Dumesic, J.A., Annu. Rev. Chem. Biomol. Eng., 2010, vol. 1, pp. 79–100.

    Article  CAS  PubMed  Google Scholar 

  81. Galletti, A.M.R., Antonetti, C., De Luise, V., and Martinelli, M., Green Chem., 2012, vol. 14, no. 3, pp. 688–694.

    Article  CAS  Google Scholar 

  82. Starodubtseva, E.V., Turova, O.V., Vinogradov, M.G., Gorshkova, L.S., and Ferapontov, V.A., Russ. Chem. Bull., 2005, vol. 54, no. 10, pp. 2374–2378.

    Article  CAS  Google Scholar 

  83. Gürbüz, E.I., Alonso, D.M., Bond, J.Q., and Dumesic, J.A., ChemSusChem, 2011, vol. 4, no. 3, pp. 357–361.

    Article  PubMed  CAS  Google Scholar 

  84. Zhou, Y., Woo, L.K., and Angelici, R.J., Appl. Catal., A, 2007, vol. 333, no. 2, pp. 238–244.

  85. Akula, S., Kumar, P.P., Prasad, R.B.N., and Kanjilal, S., Tetrahedron Lett., 2012, vol. 53, no. 27, pp. 3471–3473.

    Article  CAS  Google Scholar 

  86. Geilen, F.M.A., Engendahl, B., Hölscher, M., Klankermayer, J., and Leitner, W., J. Am. Chem. Soc., 2011, vol. 133, no. 36, pp. 14349–14358.

    Article  CAS  PubMed  Google Scholar 

  87. Phanopoulos, A., White, A.J.P., Long, N.J., and Mil-ler, P.W., ACS Catal., 2015, vol. 5, no. 4, pp. 2500–2512.

    Article  CAS  Google Scholar 

  88. Vom Stein, T., Meuresch, M., Limper, D., Schmitz, M., Hölscher, M., Coetzee, J., Cole-Hamilton, D.J., Klankermayer, J., and Leitner, W., J. Am. Chem. Soc., 2014, vol. 136, no. 38, pp. 13217–13225.

    Article  CAS  PubMed  Google Scholar 

  89. Brewster, T.P., Miller, A.J.M., Heinekey, D.M., and Goldberg, K.I., J. Am. Chem. Soc., 2013, vol. 135, no. 43, pp. 16022–16025.

    Article  CAS  PubMed  Google Scholar 

  90. Tukacs, J.M., Novák, M., Dibó, G., and Mika, L.T., Catal. Sci. Technol., 2014, vol. 4, no. 9, pp. 2908–2912.

    Article  CAS  Google Scholar 

  91. Omoruyi, U., Page, S., Hallett, J., and Miller, P.W., ChemSusChem, 2016, vol. 9, no. 16, pp. 2037–2047.

    Article  CAS  PubMed  Google Scholar 

  92. Fu, M.-C., Shang, R., Huang, Z., and Fu, Y., Synlett, 2014, vol. 25, no. 19, pp. 2748–2752.

    Article  CAS  Google Scholar 

  93. Dai, N., Shang, R., Fu, M., and Fu, Y., Chin. J. Chem., 2015, vol. 33, no. 4, p. 393.

    Article  Google Scholar 

  94. Metzker, G. and Burtoloso, A.C.B., Chem. Commun., 2015, vol. 51, no. 75, pp. 14199–14202.

    Article  CAS  Google Scholar 

  95. Jiang, K., Sheng, D., Zhang, Z., Fu, J., Hou, Z., and Lu, X., Catal. Today, 2016, vol. 274, pp. 55–59.

    Article  CAS  Google Scholar 

  96. Kumar, V.V., Naresh, G., Sudhakar, M., Tardio, J., Bhargava, S.K., and Venugopal, A., Appl. Catal., A, 2015, vol. 505, pp. 217–223.

  97. Gundekari, S. and Srinivasan, K., Catal. Commun., 2017, vol. 102, pp. 40–43.

    Article  CAS  Google Scholar 

  98. Song, S., Yao, S., Cao, J., Di, L., Wu, G., Guan, N., and Li, L., Appl. Catal., B, 2017, vol. 217, pp. 115–124.

    Article  CAS  Google Scholar 

  99. Peng, L., Lin, L., Zhang, J., Shi, J., and Liu, S., Appl. Catal., A, 2011, vol. 397, nos. 1–2, pp. 259–265.

  100. Windom, B.C., Lovestead, T.M., Bruno, T.J., Mascal, M., and Nikitin, E.B., Energy Fuels, 2011, vol. 25, no. 4, pp. 1878–1890.

    Article  CAS  Google Scholar 

  101. Kim, B., Jeong, J., Shin, S., Lee, D., Kim, S., Yoon, H.-J., and Cho, J.K., ChemSusChem, 2010, vol. 3, no. 11, pp. 1273–1275.

    Article  CAS  PubMed  Google Scholar 

  102. Hu, X. and Li, C.-Z., Green Chem., 2011, vol. 13, no. 7, pp. 1676–1679.

    Article  CAS  Google Scholar 

  103. Démolis, A., Essayem, N., and Rataboul, F., ACS Sustainable Chem. Eng., 2014, vol. 2, no. 6, pp. 1338–1352.

    Article  CAS  Google Scholar 

  104. Manzer, L.E., Appl. Catal., A, 2004, vol. 272, nos. 1–2, pp. 249–256.

  105. Yan, Z., Lin, L., and Liu, S., Energy Fuels, 2009, vol. 23, no. 8, pp. 3853–3858.

    Article  CAS  Google Scholar 

  106. Al-Shaal, M.G., Wright, W.R.H., and Palkovits, R., Green Chem., 2012, vol. 14, no. 5, pp. 1260–1263.

    Article  CAS  Google Scholar 

  107. Shindler, Yu., Matatov-Meytal, Yu., and Sheintuch, M., Ind. Eng. Chem. Res., 2001, vol. 40, no. 15, pp. 3301–3308.

    Article  CAS  Google Scholar 

  108. Fajt, V., Kurc, L., and Červený, L., Int. J. Chem. Kinet., 2008, vol. 40, no. 5, pp. 240–252.

    Article  CAS  Google Scholar 

  109. Wainwright, M.S., Ahn, T., Trimm, D.L., and Cant, N.W., J. Chem. Eng. Data, 1987, vol. 32, no. 1, pp. 22–24.

    Article  CAS  Google Scholar 

  110. Al-Shaal, M.G., Calin, M., Delidovich, I., and Palkovits, R., Catal. Commun., 2016, vol. 75, pp. 65–68.

    Article  CAS  Google Scholar 

  111. Mori, K., Kumami, A., Tomonari, M., and Yamashita, H., J. Phys. Chem. C, 2009, vol. 113, no. 39, pp. 16850–16854.

    Article  CAS  Google Scholar 

  112. Mori, K., Tottori, M., Watanabe, K., Che, M., and Yamashita, H., J. Phys. Chem. C, 2011, vol. 115, no. 43, pp. 21358–21362.

    Article  CAS  Google Scholar 

  113. Kuwahara, Y., Magatani, Y., and Yamashita, H., Catal. Today, 2015, vol. 258, part 2, pp. 262–269.

    Article  CAS  Google Scholar 

  114. Li, G., Yang, H., Cheng, M., Hu, W., Tian, L., Mao, W., and Nie, R., Mol. Catal., 2018, vol. 455, pp. 95–102.

    Article  CAS  Google Scholar 

  115. Sychev, V.V., Baryshnikov, S.V., Ivanov, I.P., Volochaev, M.N., and Taran, O.P., Zh. Sib. Fed. Univ., Khim., 2021, vol. 14, no. 1, pp. 5–20.

    Google Scholar 

  116. Feng, J., Gu, X., Xue, Y., Han, Y., and Lu, X., Sci. Total Environ., 2018, vol. 633, pp. 426–432.

    Article  CAS  PubMed  Google Scholar 

  117. Lange, J.P., Price, R., Ayoub, P.M., Louis, J., Petrus, L., Clarke, L., and Gosselink, H., Angew. Chem., Int. Ed. Engl., 2010, vol. 49, no. 26, pp. 4479–4483.

    Article  CAS  Google Scholar 

  118. Raspolli Galletti, A.M., Antonetti, C., Ribechini, E., Colombini, M.P., Nassi o Di Nasso, N., and Bonari, E., Appl. Energy, 2012, vol. 102, pp. 157–162.

    Article  CAS  Google Scholar 

  119. Luo, W., Deka, U., Beale, A.M., van Eck, E.R.H., Bruijnincx, P.C.A., and Weckhuysen, B.M., J. Catal., 2013, vol. 301, pp. 175–186.

    Article  CAS  Google Scholar 

  120. Ding, D., Wang, J., Xi, J., Liu, X., Lu, G., and Wang, Y., Green Chem., 2014, vol. 16, no. 8, pp. 3846–3853.

    Article  CAS  Google Scholar 

  121. Yan, K., Lafleur, T., Jarvis, C., and Wu, G., J. Cleaner Prod., 2014, vol. 72, pp. 230–232.

    Article  CAS  Google Scholar 

  122. Yan, K., Lafleur, T., Wu, G., Liao, J., Ceng, C., and Xie, X., Appl. Catal., A, 2013, vol. 468, pp. 52–58.

  123. Chan-Thaw, C.E., Marelli, M., Psaro, R., Ravasio, N., and Zaccheria, F., RSC Adv., 2013, vol. 3, no. 5, pp. 1302–1306.

    Article  CAS  Google Scholar 

  124. Amarasekara, A.S. and Hasan, M.A., Catal. Commun., 2015, vol. 60, pp. 5–7.

    Article  CAS  Google Scholar 

  125. Yang, Z., Huang, Y.-B., Guo, Q.-X., and Fu, Y., Chem. Commun., 2013, vol. 49, no. 46, pp. 5328–5330.

    Article  CAS  Google Scholar 

  126. Pinto, B.P., Fortuna, A.L.L., Cardoso, C.P., and Mota, C.J.A., Catal. Lett., 2017, vol. 147, no. 3, pp. 751–757.

    Article  CAS  Google Scholar 

  127. Li, C., Xu, G., Zhai, Y., Liu, X., Ma, Y., and Zhang, Y., Fuel, 2017, vol. 203, pp. 23–31.

    Article  CAS  Google Scholar 

  128. Hengst, K., Schubert, M., Carvalho, H.W.P., Lu, C., Kleist, W., and Grunwaldt, J.-D., Appl. Catal., A, 2015, vol. 502, pp. 18–26.

  129. Sun, M.Q., Xia, J., Wang, H., Liu, X., Xia, Q., and Wang, Y., Appl. Catal., B, 2018, vol. 227, pp. 488–498.

    Article  CAS  Google Scholar 

  130. Gong, W., Chen, C., Fan, R., Zhang, H., Wang, G., and Zhao, H., Fuel, 2018, vol. 231, pp. 165–171.

    Article  CAS  Google Scholar 

  131. Upare, P.P., Jeong, M.G., Hwang, Y.K., Kim, Y.D., Hwang, D.W., Lee, U.H., Chang, J.S., and Kim, D.H., Appl. Catal., A, 2015, vol. 491, pp. 127–135.

  132. Tang, X., Hu, L., Sun, Y., Zhao, G., Hao, W., and Lin, L., RSC Adv., 2013, vol. 3, no. 26, pp. 10277–10284.

    Article  CAS  Google Scholar 

  133. Tang, X., Chen, H., Hu, L., Hao, W., Sun, Y., Zeng, X., Lin, L., and Liu, S., Appl. Catal., B, 2014, vol. 147, pp. 827–834.

    Article  CAS  Google Scholar 

  134. Kuwahara, Y., Kaburagi, W., Osada, Y., Fujitani, T., and Yamashita, H., Catal. Today, 2017, vol. 281, part 3, pp. 418–428.

    Article  CAS  Google Scholar 

  135. He, J., Li, H., Lu, Y.-M., Liu, Y.-X., Wu, Z.-B., Hu, D.-Y., and Yang, S., Appl. Catal., A, 2016, vol. 510, pp. 11–19.

  136. Xiao, Z., Zhou, H., Hao, J., Hong, H., Song, Y., He, R., Zhi, K., and Liu, Q., Fuel, 2017, vol. 193, pp. 322–330.

    Article  CAS  Google Scholar 

  137. Li, H., Fang, Z., and Yang, S., ACS Sustainable Chem. Eng., 2016, vol. 4, no. 1, pp. 236–246.

    Article  CAS  Google Scholar 

  138. Xie, Y., Li, F., Wang, J., Wang, R., Wang, H., Liu, X., and Xia, Y., Mol. Catal., 2017, vol. 442, pp. 107–114.

    Article  CAS  Google Scholar 

  139. Morales, G., Melero, J.A., Iglesias, J., Paniagua, M., and López-Aguado, C., React. Chem. Eng., 2019, vol. 4, no. 10, pp. 1834–1843.

    Article  CAS  Google Scholar 

  140. Paniagua, M., Morales, G., Melero, J.A., Iglesias, J., López-Aguado, C., Vidal, N., Mariscal, R., López-Granados, M., and Martínez-Salazar, I., Catal. Today, 2021, vol. 367, pp. 228–238.

    Article  CAS  Google Scholar 

  141. He, J., Li, H., Xu, Y., and Yang, S., Renewable Energy, 2020, vol. 146, pp. 359–370.

    Article  CAS  Google Scholar 

  142. Wu, W., Li, Y., Li, H., Zhao, W., and Yang, S., Catalysts, 2018, vol. 264, vol. 8, no. 7. https://doi.org/10.3390/catal8070264

  143. Cai, Z., Li, W., Wang, F., and Zhang, X., J. Taiwan Inst. Chem. Eng., 2018, vol. 93, pp. 374–378.

    Article  CAS  Google Scholar 

  144. Kondeboina, M., Enumula, S.S., Gurram, V.R.B., Chada, R.R., Burri, D.R., and Kamaraju, S.R.R., J. Ind. Eng. Chem., 2018, vol. 61, pp. 227–235.

    Article  CAS  Google Scholar 

  145. Son, P.A., Nishimura, S., and Ebitani, K., RSC Adv., 2014, vol. 4, no. 21, pp. 10525–10530.

    Article  CAS  Google Scholar 

  146. Hussain, S.K., Velisoju, V.K., Rajan, N.P., Kumar, B.P., and Chary, K.V.R., ChemistrySelect, 2018, vol. 3, no. 22, pp. 6186–6194.

    Article  CAS  Google Scholar 

  147. Hengne, A.M., Malawadkar, A.V., Biradar, N.S., and Rode, C.V., RSC Adv., 2014, vol. 4, no. 19, pp. 9730–9736.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00636 and budget project no. 0287-2021-0012 for Institute of Chemistry and Chemical Technology, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. P. Taran, V. V. Sychev or B. N. Kuznetsov.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taran, O.P., Sychev, V.V. & Kuznetsov, B.N. γ-Valerolactone as a Promising Solvent and Basic Chemical Product: Catalytic Synthesis from Plant Biomass Components. Catal. Ind. 13, 289–308 (2021). https://doi.org/10.1134/S2070050421030119

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050421030119

Keywords:

Navigation