Skip to main content
Log in

Using a Microchannel Reactor to Optimize the Production of 1-Alkyl-3-Methylimidazolium Chlorides

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The possibility of using microchannel flow reactors to obtain the kinetic and technological parameters of the synthesis of 1-butyl-3-methylimidazolium chloride (BMIMCl) ionic liquid is demonstrated for the reaction of 1-methylimidazole (MIm) with 1-chlorobutane with no solvents. BMIMCl is produced with high selectivity and specific output in a microchannel flow reactor at temperatures of 120–180°C a contact time of 2–45 min, and a pressure of 20 bar. A positive result is obtained, due to the laminar profile of the flow and a uniform distribution of the reagents concentration over the microchannel cross section. Studying the kinetics of the process in a microchannel flow reactor reveals a shift of the reaction to the mode of diffusive inhibition at temperatures above 150°C. The kinetic data obtained for BMIMCl synthesis are used to develop ways of producing 1-ethyl-3-methylimidazolium and 1-hexyl-3-methylimidazolium chlorides (EMIMCl and HMIMCl, respectively) under the conditions of a microchannel flow reactor. The approach proposed in this work is of interest in developing flow and periodic facilities for the low-tonnage production of dialkylimidazolium, ammonium, and pyridinium salts via quaternization of the corresponding alkyl chlorides and nitrogen-containing bases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Elements of the Business of Chemistry, 2017. https://www.coursehero.com/file/50199317/2017-Elements-of-the-Business-of-Chemistrypdf/. Cited July 12, 2020.

  2. Specialty chemicals market to reach $1.79 trillion by 2025, Focus Catal., 2017, vol. 2017, no. 8. https://doi.org/10.1016/j.focat.2017.07.011

  3. Eisberg, N., Chem. Ind., 2014, vol. 78, pp. 42–45.

    CAS  Google Scholar 

  4. Perry’s Chemical Engineers’ Handbook, Green, D.W. and Perry, R.H., Eds., New York: McGraw-Hill, 2008.

    Google Scholar 

  5. Bieringer, T., Buchholz, S., and Kockmann, N., Chem. Eng. Technol., 2013, vol. 36, no. 6, pp. 900–910.

    Article  CAS  Google Scholar 

  6. Keil, F.J., Rev. Chem. Eng., 2018, vol. 34, no. 2, pp. 135–200.

    Article  Google Scholar 

  7. Appel, J., Colombo, C., Dätwyler, U., Chen, Y., and Kerimoglu, N., Chimia, 2016, vol. 70, no. 9, pp. 621–627.

    Article  CAS  Google Scholar 

  8. Wesche, M., Häberl, M., Kohnke, M., and Scholl, S., Chem. Ing. Tech., 2015, vol. 87, no. 3, pp. 203–215.

    Article  CAS  Google Scholar 

  9. Ghaini, A., Balon-Burger, M., Bogdan, A., Krtschil, U., and Löb, P., Chem. Eng. Technol., 2015, vol. 38, no. 1, pp. 33–43.

    Article  CAS  Google Scholar 

  10. Kashid, M.N., Renken, A., and Kiwi-Minsker, L., Microstructured Devices for Chemical Processing, Weinheim: Wiley-VCH, 2015, ch. 1, pp. 1–17.

    Google Scholar 

  11. Krtschil, U., Hofmann, C., Löb, P., Schütt, C., Schorcht, P., and Streuber, M., Green Process. Synth., 2013, vol. 2, no. 5, pp. 451–463.

    CAS  Google Scholar 

  12. Porta, R., Benaglia, M., and Puglisi, A., Org. Process Res. Dev., 2016, vol. 20, no. 1, pp. 2–25.

    Article  CAS  Google Scholar 

  13. Reintjens, R. and de Vries, A.H.M., Chem. Eng., 2016, vol. 123, p. 40.

    Google Scholar 

  14. Suryawanshi, P.L., Gumfekar, S.P., Bhanvase, B.A., Sonawane, S.H., and Pimplapure, M.S., Chem. Eng. Sci., 2018, vol. 189, no. 2, pp. 431–448.

    Article  CAS  Google Scholar 

  15. Protasova, L.N., Bulut, M., Ormerod, D., Buekenhoudt, A., Berton, J., and Stevens, C.V., Org. Process Res. Dev., 2013, vol. 17, no. 5, pp. 760–791.

    Article  CAS  Google Scholar 

  16. Lau, W.N., Yeung, K.L., and Martin-Aranda, R., Microporous Mesoporous Mater., 2008, vol. 115, nos. 1–2, pp. 156–163.

  17. Wan, Y.S.S., Gavriilidis, A., and Yeung, K.L., Chem. Eng. Res. Des., 2003, vol. 81, no. 7, pp. 753–759.

    Article  CAS  Google Scholar 

  18. Horny, C., Kiwi-Minsker, L., and Renken, A., Chem. Eng. J., 2004, vol. 101, nos. 1–3, pp. 3–9.

  19. Karim, A., Bravo, J., and Datye, A., Appl. Catal., A, 2005, vol. 282, nos. 1–2, pp. 101–109.

  20. Bellos, G.D. and Papayannakos, N.G., Catal. Today, 2003, vols. 79–80, pp. 349–355.

  21. Andreev, D.V., Sergeev, E.E., Gribovskii, A.G., Makarshin, L.L., Prikhod’ko, S.A., Adonin, N.Yu., Pai, Z.P., and Parmon, V.N., Chem. Eng. J., 2017, vol. 330, pp. 899–905.

    Article  CAS  Google Scholar 

  22. García-Verdugo, E., Altava, B., Burguete, M.I., Lozano, P., and Luis, S.V., Green Chem., 2015, vol. 17, no. 5, pp. 2693–2713.

    Article  Google Scholar 

  23. Hallett, J.P. and Welton, T., Chem. Rev., 2011, vol. 111, no. 5, pp. 3508–3576.

    Article  CAS  Google Scholar 

  24. Sawant, A.D., Raut, D.G., Darvatkar, N.B., and Salunkhe, M.M., Green Chem. Lett. Rev., 2011, vol. 4, no. 1, pp. 41–54.

    Article  CAS  Google Scholar 

  25. Hu, S., Wang, A., Löwe, H., Li, X., Wang, Y., Li, C., and Yang, D., Chem. Eng. J., 2010, vol. 162, no. 1, pp. 350–354.

    Article  CAS  Google Scholar 

  26. Löwe, H., Axinte, R.D., Breuch, D., Hofmann, C., Petersen, J.H., Pommersheim, R., and Wang, A., Chem. Eng. J., 2010, vol. 163, no. 3, pp. 429–437.

    Article  Google Scholar 

  27. Zhang, J., Wang, Y.J., and Hu, S.Z., Asian J. Chem., 2014, vol. 26, no. 8, pp. 2369–2372.

    Article  CAS  Google Scholar 

  28. Bubalo, M.C., Sabotin, I., Radoš, I., Valentinčič, J., Bosiljkov, T., Brnčić, M., and Žnidaršič-Plazl, P., Green Process. Synth., 2013, vol. 2, no. 6, pp. 579–590.

    CAS  Google Scholar 

  29. Seddon, K.R., J. Chem. Technol. Biotechnol., 1997, vol. 68, no. 4, pp. 351–356.

    Article  CAS  Google Scholar 

  30. Böwing A.G. and Jess, A., Green Chem., 2005, vol. 7, no. 4, pp. 230–235.

    Article  Google Scholar 

  31. Burrell, A.K., Del Sesto, R.E., Baker, S.N., McCleskey, T.M., and Baker, G.A., Green Chem., 2007, vol. 9, no. 5, pp. 449–454.

    Article  CAS  Google Scholar 

  32. Kärkkäinen, J., Asikkala, J., Laitenen, R.S., and Lajunen, M.K., Z. Naturforsch., 2004, vol. 59b, pp. 763–770.

    Article  Google Scholar 

  33. Zhou, Z., Wang, T., and Xing, H., Ind. Eng. Chem. Res., 2006, vol. 45, no. 2, pp. 525–529.

    Article  CAS  Google Scholar 

  34. Verevkin, S.P., Zaitsau, D.H., Emel’yanenko, V.N., Paulechka, Y.U., Blokhin, A.V., Bazyleva, A.B., and Kabo, G.J., J. Phys. Chem. B, 2011, vol. 115, no. 15, pp. 4404–4411.

    Article  CAS  Google Scholar 

  35. Stridh, G. and Sunner, S., J. Chem. Thermodyn., 1975, vol. 7, no. 2, pp. 161–168.

    Article  CAS  Google Scholar 

  36. Shehatta, I., Thermochim. Acta, 1993, vol. 213, pp. 1–10.

    Article  CAS  Google Scholar 

  37. Verevkin, S.P., Zaitsau, D.H., Emel’yanenko, V.N., Ralys, R.V., Yermalayeu, A.V., and Schick, C., Thermochim. Acta, 2013, vol. 562, pp. 84–95.

    Article  CAS  Google Scholar 

  38. Raja, L.L., Kee, R.J., Deutschmann, O., Warnatz, J., and Schmidt, L.D., Catal. Today, 2000, vol. 59, nos. 1–2, pp. 47–60.

  39. Scott, F.H., Elements of Chemical Reaction Engineering, Boston, MA: Prentice Hall, 2016.

    Google Scholar 

  40. Bogdanov, M.G. and Svinyarov, I., Processes, 2017, vol. 5, no. 4, pp. 52–62.

    Article  Google Scholar 

  41. Firaha, D.S. and Paulechka, Y.U., Int. J. Chem. Kinet., 2013, vol. 45, no. 12, pp. 771–779.

    Article  CAS  Google Scholar 

  42. Clough, M., Griffith, J., Sulaiman, M.R., Corbett, P., and Welton, T., Alkylation of 1-methylimidazole with 1-chlorobutane; the ionic liquid 1-butyl-3-methylimidazolium chloride, ChemSpider SyntheticPages, Royal Society of Chemistry, http://cssp.chemspider.com/747. Cited July 12, 2020.

  43. Dupont, J., Consorti, C.S., Suarez, P.A.Z., de Souza, R.F., Fulmer, S.L., Richardson, D.P., Smith, T.E., and Wolff, S., Org. Synth., 2002, vol. 79, pp. 236–243.

    Article  CAS  Google Scholar 

  44. Chiappe, C., Mezzetta, A., Pomelli, C.S., Puccini, M., and Seggiani, M., Org. Process Res. Dev., 2016, vol. 20, no. 12, pp. 2080–2084.

    Article  CAS  Google Scholar 

  45. Gonzalez, M.A. and Ciszewski, J.T., Org. Process Res. Dev., 2009, vol. 13, no. 1, pp. 64–66.

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as part of project no. 0303-2019-0007 (AAAA-A17-117041710082-8) for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Andreev.

Ethics declarations

The authors state they have no conflicts of interest to declare.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klimenko, A.S., Andreev, D.V., Prikhod’ko, S.A. et al. Using a Microchannel Reactor to Optimize the Production of 1-Alkyl-3-Methylimidazolium Chlorides. Catal. Ind. 12, 207–215 (2020). https://doi.org/10.1134/S2070050420030071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420030071

Keywords:

Navigation