Skip to main content
Log in

Studying the Stage of Nitric Oxide Desorption from the Surfaces of CuO/γ-Al2O3 Catalysts, with or without a Reducing Agent

  • CATALYSIS AND ENVIRONMENTAL PROTECTION
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

Nitric oxide desorption from the surfaces of supported copper-containing catalysts (CuO/γ-Al2O3) as a function of temperature is studied. NO preadsorption occurs both in an inert medium of argon and in the presence of oxygen. It is shown that the presence of oxygen considerably raises the capacity of the samples with respect to NO, due to the activation of a supplementary redox mechanism. In addition, the maximum desorption temperature shifts to the region of higher temperatures. For a sample exhibiting the highest capacity with respect to NO, the desorption process is conducted using hydrogen and propane as reducing agents. Desorption with hydrogen leads to the reduction of adsorbed species at temperatures of 160–190°C. With propane, NOx desorption proceeds mostly due to the thermal degradation of adsorbed nitrogen species to NO in the temperature range of 180–250°C, as in an inert atmosphere. The contribution from reduction due to the presence of propane manifests at temperatures of 260–300°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Mrad, R., Aissata, A., Cousina, R., Courcota, D., and Sifferta, S., Appl. Catal., A, 2015, 504, pp. 542–548.

  2. Cheng, X. and Bi, X., Particuology, 2014, vol. 16, pp. 1–18.

    Article  CAS  Google Scholar 

  3. Li, J., Chang, H., Ma, L., Hao, J., and Yang, R.T., Catal. Today, 2011, vol. 175, no. 1, pp. 147–156.

    Article  CAS  Google Scholar 

  4. Lu, C.-Y. and Wey, M.-Y., Fuel Process. Technol., 2007, vol. 88, no. 6, pp. 557–567.

    Article  CAS  Google Scholar 

  5. Pérez-Ramírez, J., García-Cortés, J.M., Kapteijn, F., Illán-Gómez, M.J., Ribera, A., Salinas-Martínez de Lecea, C., and Moulijn, J.A., Appl. Catal., B, 2000, vol. 25, nos. 2–3, pp. 191–203.

  6. Cheng, X. and Bi, X., Ind. Eng. Chem. Res., 2014, vol. 53, no. 22, pp. 9365–9376.

    Article  CAS  Google Scholar 

  7. Aissat, A., Courcot, D., Cousin, R., and Siffert, S., Catal. Today, 2011, vol. 176, no. 1, pp. 120–125.

    Article  CAS  Google Scholar 

  8. Castoldi, L., Bonzi, R., Lietti, L., Forzatti, P., Morandi, S., Ghiotti, G., and Dzwigaj, S., J. Catal., 2011, vol. 282, no. 1, pp. 128–144.

    Article  CAS  Google Scholar 

  9. Golosman, E.Z. and Kononova, D.E., Ross. Khim. Zh., 2006, vol. 50, no. 3, pp. 167–172.

    CAS  Google Scholar 

  10. Liu, Z. and Woo, S.I., Catal. Rev., 2006, vol. 48, no. 1, pp. 43–89.

    Article  CAS  Google Scholar 

  11. Roy, S., Hegde, M.S., and Madras, G., Appl. Energy, 2009, vol. 86, no. 11, pp. 2283–2297.

    Article  CAS  Google Scholar 

  12. Mendialdua, J., Casanova, R., Rueda, F., Rodríguez, A., Quiñones, J., Alarcón. L., Escalante, E., Hoffmann, P., Taebi, I., and Jalowiecki, L., J. Mol. Catal. A: Chem., 2005, vol. 228, nos. 1–2, pp. 151–162.

  13. Scofield, J.H., J. Electron Spectrosc. Relat. Phenom., 1976, vol. 8, no. 2, pp. 129–137.

    Article  CAS  Google Scholar 

  14. Shirley, D.A., Phys. Rev. B, 1972, vol. 5, no. 12, pp. 4709–4714.

    Article  Google Scholar 

  15. CasaXPS: Processing Software for XPS, AES, SIMS and More. www.casaxps.com. Cited July 13, 2020.

  16. Van den Brand, J., Snijders, P.C., Sloof, W.G., Terryn, H., and de Wit, J.H.W., J. Phys. Chem. B, 2004, vol. 108, no. 19, pp. 6017–6024.

    Article  CAS  Google Scholar 

  17. Kosova, N., Devyatkina, E., Slobodyuk, A., and Kaichev, V., Solid State Ionics, 2008, vol. 179, nos. 27–32, pp. 1745–1749.

  18. Strohmeier, B.R., Levden, D.E., Field, R.S., and Hercules, D.M., J. Catal., 1985, vol. 94, no. 2, pp. 514–530.

    Article  CAS  Google Scholar 

  19. McIntyre, N.S. and Cook, M.G., Anal. Chem., 1975, vol. 47, no. 13, pp. 2208–2213.

    Article  CAS  Google Scholar 

  20. Tikhov, S.F., Sadykov, V.A., Paukshtis, E.A., Po-povskii, V.V., Starostina, T.G., Kryukova, G.N., Kharlanov, G.V., Anufrienko, V.F., Poluboyarov, V.F., Razdobarov, V.A., and Bulgakov, N.N., Kinet. Catal., 1989, vol. 30, no. 4, pp. 869–878.

    CAS  Google Scholar 

  21. Tikhov, S.F., Sadykov, V.A., Kryukova, G.N., Paukshtis, E.A., Popovskii, V.V., Starostina, T.G., Kharlamov, G.V., Anufrienko, V.F., Poluboyarov, V.F., Razdobarov, V.A., Bulgakov, N.N., and Kalinkin, A.V., J. Catal., 1992, vol. 134, no. 2, pp. 506–524.

    Article  CAS  Google Scholar 

  22. Chi, Y. and Chuang, S.S.C., J. Catal., 2000, vol. 190, no. 1, pp. 75–91.

    Article  CAS  Google Scholar 

  23. Matyshak, V.A., Baron, S.L., Ukharskii, A.A., Il’ichev, A.N., Sadykov, V. A., and Korchak, V.N., Kinet. Catal., 1996, vol. 37, no. 4, pp. 549–554.

    CAS  Google Scholar 

  24. Beloshapkin, S.A., Matyshak, V.A., Paukshtis, E.A., Sadykov, V.A., Ilyichev, A.N., Ukharskii, A.A., and Lunin, V.V., React. Kinet. Catal. Lett., 1999, vol. 66, no. 2, pp. 297–304.

    Article  CAS  Google Scholar 

  25. Konin, G.A., Il’ichev, A.N., Matyshak, V.A., Khomenko, T.I., Korchak, V.N., Sadykov, V.A., Doronin, V.P., Bunina, R.V., Alikina, G.M., Kuznetsova, T.G., Paukshtis, E.A., Fenelonov, V.B., Zaikovskii, V.I., Ivanova, A.S., Beloshapkin, S.A., Rozovskii, A.Ya., Tretyakov, V.F., Ross, J.R.H., and Breen, J.P., Top. Catal., 2001, vol. 16, nos. 1–4, pp. 193–197.

  26. Metelkina, O.V., Lunin, V.V., Sadykov, V.A., Beloshapkin, S.A., Alikina, G.M., Lunina, E.V., Parenago, O.O., and Kharlanov, A.N., Pet. Chem., 2000, vol. 40, no. 2, p. 90–97.

    Google Scholar 

  27. Metelkina, O.V., Lunin, V.V., Sadykov, V.A., Alikina, G.M., Bunina, R.V., Paukshtis, E.A., Fenelonov, V.B.,. Derevyankin, A.Yu., Zaikovskii, V.I., Schubert, U., and Ross, J.R.H., Catal. Lett., 2002, vol. 78, nos. 1–4, pp. 111–114.

  28. Sadykov, V.A., Rozovskii, A.Ya., Lunin, V.V., Lin, G.I., Alikina, G.M., Buchtiyarova, G.A., Zolotovskii, B.P., and Beloshapkin, S.A., React. Kinet. Catal. Lett., 1999, vol. 66, no. 2, pp. 337–341.

    Article  CAS  Google Scholar 

  29. Matyshak, V.A., Ukharskii, A.A., Il’ichev, A.N., Sadykov, V.A., and Korchak, V.N., Kinet. Catal., 1999, vol. 40, no. 1, pp. 105–111.

    CAS  Google Scholar 

Download references

Funding

This work was performed as part of a state task for the Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of Sciences, project no. AAAA-A17-117041710075-0.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. V. Dubinin, N. A. Tsereshko or V. A. Yakovlev.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubinin, Y.V., Tsereshko, N.A. & Yakovlev, V.A. Studying the Stage of Nitric Oxide Desorption from the Surfaces of CuO/γ-Al2O3 Catalysts, with or without a Reducing Agent. Catal. Ind. 12, 255–264 (2020). https://doi.org/10.1134/S2070050420030046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050420030046

Keywords:

Navigation