Skip to main content
Log in

Studying the Effect of Promotion with Copper on the Activity of the Ni/Al2O3 Catalyst in the Process of Ester Hydrotreatment

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

A study is made of the effect of the composition of the active component of copper-doped nickel catalysts on their activity and selectivity in the hydrodeoxygenation (HDO) of model compounds of vegetable oils (esters) to remove oxygen atoms from them with the formation of alkanes. It is shown that the Ni/Al2O3 and Ni–Cu/Al2O3 catalysts are active in this process. With them, the hydrodeoxygenation of methyl ester of hexadecanoic acid mixed with ethyl ester of decanoic acid results in the formation of С6−С16 alkanes and oxygen-containing products, while methane and ethane can be found in the gas phase. When the Ni : Cu ratio in the catalysts is lowered, the conversion of esters and the capability of these catalysts for C–C bond hydrogenolysis are reduced. This means the introduction of copper can promote retention of the carbon skeleton of alkanes obtained as a result of hydrodeoxygenation, along with the amount of methane. According to X-ray diffraction data, introducing copper into the Ni/Al2O3 catalyst results in the formation of Ni1 – xCux solid solutions. According to X-ray photoelectron spectroscopy data, lowering the content of copper in the Ni–Cu/Al2O3 catalyst raises the Ni : Cu ratio on a sample’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Organization of the Petroleum Exporting Countries, 2017 OPEC: World Oil Outlook. https://www.opec.org/ opec_web/en/publications/340.htm. Cited July 6, 2019.

  2. Mwangi, J.K., Lee, W. J., Chang, Y.C., Chen, C.Y., and Wang, L.C., Appl. Energy, 2015, vol. 159, pp. 214–236. https://doi.org/10.1016/j.apenergy.2015.08.084

    Article  CAS  Google Scholar 

  3. Mofijur, M., Rasul, M.G., Hyde, J., Azad, A.K., Mamat, R., and Bhuiya, M.M.K., Renewable Sustainable Energy Rev., 2016, vol. 53, pp. 265–278. https://doi.org/10.1016/j.rser.2015.08.046

    Article  CAS  Google Scholar 

  4. Luque, R., Herrero-Davila, L., Campelo, J.M., Clark, J.H., Hidalgo, J.M., Luna, D., Marinas, J.M., and Romero, A.A., Energy Environ. Sci., 2008, vol. 1, no. 5, pp. 542–564.

    Article  CAS  Google Scholar 

  5. Jiménez Espadafor, F., Torres García, M., Becerra Villanueva, J., and Moreno Gutiérrez, J., Transp. Res., D, 2009, vol. 14, no. 7, pp. 461–469.

  6. Ma, F.R. and Hanna, M.A., Bioresour. Technol., 1999, vol. 70, no. 1, pp. 1–15.

    Article  CAS  Google Scholar 

  7. Furimsky, E., Appl. Catal., A, 2000, vol. 199, no. 2, pp. 147–190.

  8. Choudhary, T.V. and Phillips, C.B., Appl. Catal., A, 2011, vol. 397, nos. 1–2, pp. 1–12.

  9. Dahlquist, E., Technologies for Converting Biomass to Useful Energy: Combustion, Gasification, Pyrolysis, Torrefaction and Fermentation, Cleveland: CRC Press, 2013.

    Book  Google Scholar 

  10. Liu, Q., Zuo, H., Wang, T., Ma, L., and Zhang, Q., Appl. Catal., A, 2013, vol. 468, pp. 68–74.

  11. Toba, M., Abe, Y., Kuramochi, H., Osako, M., Mochizuki, T., and Yoshimura, Y., Catal. Today, 2011, vol. 164, no. 1, pp. 533–537.

    Article  CAS  Google Scholar 

  12. Şenol, O.İ., Viljava, T.R., and Krause, A.O.I., Catal. Today, 2005, vol. 106, nos. 1–4, pp. 186–189.

  13. Şenol, O.İ., Viljava, T.R., and Krause, A.O.I., Catal. Today, 2005, vol. 100, nos. 3–4, pp. 331–335.

  14. Şenol, O.İ., Viljava, T.-R., and Krause, A.O.I., Appl. Catal., A, 2007, vol. 326, no. 2, pp. 236–244.

  15. Bridgwater, A.V., Catal. Today, 1996, vol. 29, nos. 1–4, pp. 285–295.

  16. Wang, W., Zhang, K., Liu, H., Qiao, Z., Yang, Y., and Ren, K., Catal. Commun., 2013, vol. 41, pp. 41–46.

    Article  CAS  Google Scholar 

  17. Yakovlev, V.A., Khromova, S.A., Sherstyuk, O.V., Dundich, V.O., Ermakov, D.Y., Novopashina, V.M., Lebedev, M.Y., Bulavchenko, O., and Parmon, V.N., Catal. Today, 2009, vol. 144, nos. 3–4, pp. 362–366.

  18. Lee, J.-H., Lee, E.-G., Joo, O.-S., and Jung, K.-D., Appl. Catal., A, 2004, vol. 269, nos. 1–2, pp. 1–6.

  19. Reshetenko, T.V., Avdeeva, L.B., Ismagilov, Z.R., Chuvilin, A.L., and Ushakov, V.A., Appl. Catal., A, 2003, vol. 247, no. 1, pp. 51–63.

  20. Mile, B., Stirling, D., Zammit, M.A., Lovell, A., and Webb, M., J. Catal., 1988, vol. 114, no. 2, pp. 217–229.

    Article  CAS  Google Scholar 

  21. Larsson, P.-O. and Andersson, A., Appl. Catal., B, 2000, vol. 24, nos. 3–4, pp. 175–192.

  22. Hoang, D.L., Dang, T.T.H., Engeldinger, J., Schneider, M., Radnik, J., Richter, M., and Martin, A., J. Solid State Chem., 2011, vol. 184, no. 8, pp. 1915–1923.

    Article  CAS  Google Scholar 

  23. Batista, J., Pintar, A., Mandrino, D., Jenko, M., and Martin, V., Appl. Catal., A, 2001, vol. 206, no. 1, pp. 113–124.

  24. Robertson, S.D., McNicol, B.D., De Baas, J.H., Kloet, S.C., and Jenkins, J.W., J. Catal., 1975, vol. 37, no. 3, pp. 424–431.

    Article  CAS  Google Scholar 

  25. Pérez-Hernández, R, Mondragón Galicia, G., Mendoza Anaya, D., Palacios, J., Angeles-Chavez, C., and Arenas-Alatorre, J., Int. J. Hydrogen Energy, 2008, vol. 33, no. 17, pp. 4569–4576.

    Article  CAS  Google Scholar 

  26. Vizcaíno, A.J., Carrero, A., and Calles, J.A., Int. J. Hydrogen Energy, 2007, vol. 32, nos. 10–11, pp. 1450–1461.

  27. Mansouri, A., Khodadadi, A.A., and Mortazavi, Y., J. Hazard. Mater, 2014, vol. 271, pp. 120–130.

    Article  CAS  PubMed  Google Scholar 

  28. Kosova, N.V., Devyatkina, E.T., and Kaichev, V.V., J. Power Sources, 2007, vol. 174, no. 2, pp. 735–740.

    Article  CAS  Google Scholar 

  29. Li, C.P., Proctor, A., and Hercules, D.M., Appl. Spectrosc., 1984, vol. 38, pp. 880–886.

    Article  CAS  Google Scholar 

  30. Bukhtiyarov, V.I., Kaichev, V.V., and Prosvirin, I.P., Top. Catal., 2005, vol. 32, nos. 1–2, pp. 3–15.

  31. McIntyre, N.S. and Cook, M.G., Anal. Chem., 1975, vol. 47, no. 13, pp. 2208–2213.

    Article  CAS  Google Scholar 

  32. Otamiri, J.C., Andersson, S.L.T., and Andersson, A., Appl. Catal., 1990, vol. 65, no. 1, pp. 159–174.

    Article  CAS  Google Scholar 

  33. Poulston, S., Parlett, P.M., Stone, P., and Bowker, M., Surf. Interface Anal., 1996, vol. 24, no. 12, pp. 811–820.

    Article  CAS  Google Scholar 

  34. Richter, M., Fait, M.J.G., Eckelt, R., Scneider, M., Radnik, J., Heidemann, D., and Fricke, R., J. Catal., 2007, vol. 245, no. 1, pp. 11–24.

    Article  CAS  Google Scholar 

  35. Strohmeier, B.R., Leyden, D.E., Field, R.S., and Hercules, D.M., J. Catal., 1985, vol. 94, no. 2, pp. 514–530.

    Article  CAS  Google Scholar 

  36. Wollner, A., Lange, F., Schmelz, H., and Knözinger, H., Appl. Catal., A, 1993, vol. 94, no. 2, pp. 181–203.

  37. Moretti, G., J. Electron Spectrosc. Relat. Phenom., 1995, vol. 76, pp. 365–370.

    Article  CAS  Google Scholar 

  38. Satterfield, C.N., Heterogeneous Catalysis in Industrial Practice, New York: McGraw-Hill, 1980.

    Google Scholar 

  39. Ardiyanti, A.R., Khromova, S.A., Venderbosch, R.H., Yakovlev, V.A., and Heeres, H.J., Appl. Catal., B, 2012, vols. 117–118, pp. 105–117.

  40. Kukushkin, R.G., Bulavchenko, O.A., Kaichev, V.V., and Yakovlev, V.A., Appl. Catal., B, 2015, vol. 163, pp. 531–538.

    Article  CAS  Google Scholar 

  41. Sinfelt, J.H., Carter, J.L., and Yates, D.J.C., J. Catal., 1972, vol. 24, no. 2, pp. 283–296.

    Article  CAS  Google Scholar 

  42. Lin, Y.-C., and Ho, J.-J., J. Phys. Chem. C, 2011, vol. 115, pp. 19231–19238.

    Article  CAS  Google Scholar 

  43. Li, X., Luo, X., Jin, Y., Li, J., Zhang, H., Zhang, A., and Xie, J., Renewable Sustainable Energy Rev., 2018, vol. 82, part 3, pp. 3762–3797. https://doi.org/10.1016/j.rser.2017.10.091

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Scientific Foundation, project no. 18-43-08002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. G. Kukushkin, P. M. Eletskii, O. A. Bulavchenko, A. A. Saraev or V. A. Yakovlev.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kukushkin, R.G., Eletskii, P.M., Bulavchenko, O.A. et al. Studying the Effect of Promotion with Copper on the Activity of the Ni/Al2O3 Catalyst in the Process of Ester Hydrotreatment. Catal. Ind. 11, 198–207 (2019). https://doi.org/10.1134/S2070050419030061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050419030061

Keywords:

Navigation